SDC.1

STORAGE DEVELOPER CONFERENCE
SNIA = SANTA CLARA, 2015

®

Beyond Consistent Hashing and TCP:

Vastly Scalable Load Balanced Storage Clustering

Alex Aizman, Caitlin Bestler
Nexenta Systems

The Scale of Disruption

Conventional New
Data
Distribution || Consistent Hashing (CH) Group Hashing (NGH)
Mechanism
Storage
Transport Unicast (TCP) Multicast (Replicast™)

3 This presentation:
Existing technology vs. massive scale
There are In fact better alternatives..

SDC

2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Distribution & Replication Mechanism:
Data & Metadata

S D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

TOE (data storage)

Root of Everything

Unstructured

Local Distributed
|
| 1
Namespace Stripe
| | | I
DLM MDS consistent

1980s

Increasing Decentralization I\

SDC

L

2015

Structured

SOL NoSQL

Local Distributed

2015 Storage Developer Conference. © Nexenta Systems,

Inc. All Rights Reserved.

Increasing Decentralization

/ 1980s \ / 2010s

1. Allocate block or stripe 1. Map name or chunk
2. Record the location in the to target
parent’s table 2. Let the target take
\3. Write... j \ care of the rest

Inecreasiing Scale

P ! ’ ':'_'v - -
S D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved. . @.’)

p G

a &

/O pipeline(*): unstructured, distributed and striped

Block
Chunk,

| Name ‘ Stripe,

Map to metadata

Name, .
Metadata, Read, Write,

Replicate over
Chunk, Metadata (references Storage
unnamed chunks) Transport
. Icl)\:l:g't)ic;r?s Read Write Replicate
Consistent

Y

| Data Stripes ‘
(Blocks, Chunks, Shards)

O0xbl3f7..
0x85aci.. I()I\ggﬁ(;r?s Read Write Replicate
Oxfe291..
0x35dle...

Storage Targets

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Quick Recap

| Name

Map to metadata

‘ Conventional

Data I\ /I

et LLU R | Consistent Hashing || Group Hashing (NGH) Metadata (references
Mechanism unnamed chunks)

~E1 Read Write Replicate

Storage locations

Transport Multicast (Replicast™)

| Data Stripes

. (Blocks, Chunks, Shards)
D NeXt Map to

Read Write Replicate

CH vs. NGH
TCP/Unicast vs. Replicast
Simulation: model, results, charts

e
S D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Consistent Hashing

7 Openstack's Object Storage Service Swift
0 Amazon's storage system Dynamo

Name,
7 Apache Cassandra Chunk.
7 Voldemort
D R|ak Consistent
Hash
7 GlusterFS “mapper”
O Ceph* 0xb13f7...
0x85ac4...
0xfe291...
D - 0x35d1e...

Trademarks listed here and elsewhere in this presentation are property of their respective owners

S D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Ceph vs. Consistent Hashing
3 Input:

CRUSH MAP aka Cluster Map * simplified CRUSH:

HASH(node, replica)
7 Placement Groups

OSDs aka devices * Rendezvous hashing:
HASH(node, replica)

OSD weights
Rules: data redundancy * Consistent hashing:
] HASH(replica)
Replica
J Output:

Pseudo-random uniform hash across failure
domains — binomial(n, p)

3 Problems:
Same as CH — see next -

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Consistent Hashing: the good, the bad...
3 The good

better than hash(chunk) % n-servers
even better when used with virtual nodes (partitions)
d The bad

Balls-into-Bins: load =» log(n): congestion “ripples”
Subject to binomial spikes gz .
loglogn (1 + of 1')'L'/
a3 The ugly =
Hashing determinism vs. Load balancing: either/OR
Worse for larger clusters
Much worse at a high utilization
Is too consistent.. —

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

10

NGH: How It works

GW NGXx
PUT-REQ

>
| PUT-RESP(SI: Wi, Sj: W, Sk: W, ...

PUT-ACCEPT(SI, Sj, Sk)

PUT-REPLICA(Si, Sj, Sk)

3 Min(*) size NG =6
7 Simulating 9 targets per NG
0 Must select 3 best bids u

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Why NGH

a9 Admit: we simply don’t know enough about the state on the
edge

a Accept it.

a3 Main principles and motivations:
Serial transmit: one chunk at a time
Per-disk dedicated thread: one chunk at a time
Edge-based load balancing as part of the datapath
Edge-based reservation of link bandwidth:

GW NGx
0 Storage Target = to Gateway: PUT-REQ)
begln = NOW + F(q_ueue- PUT-RESP(Si: Wi, Sj. Wj, Sk: WK, ...)
depth, cache-size, link bw) €

end = begin + G(chunk-size) [aBD | 12

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Storage Transport:
Data & Control

SDC

2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

13

Unicast vs. Persistent Redundancy

a3 Typical: put(...) blocks until 3 copies get persistently stored on
3 storage servers (variations: RAIN, EE, 2 cached, etc.)

a 10 pipeline: redundancy — first, completion — second
0 Daisy Chain Replication

10GbE >

Gateway putr3 | putr2 | putrl getrl | put (replicate) ri

Storage

Server

< 10GbE

0 Sustained get() rate G

0 + Sustained single-replica put() rate P
d + Daisy chain

7 New get() rate (%):
G * 100/ (G + P)

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

TCP: the good, the bad...

0 The good:

Predominant, totally integrated and reliable
3 The bad:

Was never designed for scale-out storage clusters
a3 The ugly:

Unicast — previous slide

TCP incast — “is a catastrophic TCP throughput collapse...

1 TCP “outcast” — converged and hyper-converged clusters
Time to converge >> RTO
J However:
DCB helps
Custom/proprietary TCP kernels will help as well..

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

15

CP Simulation
7 Each chunk put: 3 successive

TCP transmissions
7 ACK every received replica

Data
Distribution
Mechanism

Storage
Transport

Conventional

Consistent Hashing (CH)

Unicast (TCP)

New

Group Hashing (NGH)

Multicast (Replicast™)

ACK delivery time = chunk reception time + 12 * RTT
7 Future-perfect TCP Congestion Protocol: Instant

Convergence

N flows to one target, each instantly adjusting to use 1/Nth

of the 10GE bandwidth

3 TCP receive window and Tx buffer sizes unlimited

3 Zero per-chunk overhead

7 Simulating TCP as a quintessential perfect Unicast

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Replicast Simulation

GW NGx
PUT-REQ

>
The (simulated) penalty is on (PUT-RESF'(Sii Wi, Sj: Wj, Sk: WK, ...)
Replicast:
« +RTT per-chunk overhead PUT-ACCEPT(SI, Sj, Sk) R
 Note: TCP is benchmarked

with (0) zero overhead

« Replicast still wins..

PUT-REPLICA(Si, Sj, Sk)

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Tire Kicking

0 https://qithub.com/Nexenta/nedge-sim
./build-ndebug
Jdo_benchmarks.sh

0 Example:
./test ngs 128 chunk size 128 gateways 512 duration 100

0 Extensive comments inside
d Detalled log tracking of each transaction
3 Logs for the cited runs can be reproduced at ff5fbda

Default Comment

#define CLUSTER_TRIP_TIME 10000 // approximately l1us; RTT = 2us

#define N_REPLICAS 3 [/l replicas of each stored chunk
#define MBS _SEC PER_TARGET_DRIVE 400 // 400MB/s (eMLC)

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

https://github.com/Nexenta/nedge-sim
https://github.com/Nexenta/nedge-sim
https://github.com/Nexenta/nedge-sim
https://github.com/Nexenta/nedge-sim
https://github.com/Nexenta/nedge-sim/commit/ff5fbda7c2967844d8c012d8e121c7c13db214fd

/O Pipelines: CH/TCP and NGH/Replicast

TCP TCP TCP

DISK REPLICA
WRITE PUT
COMPLETION ACK

XMIT
RECEIVED

RECEPTION RECEPTION
COMPLETE ACK

i
ick by Tick, where
at 10GbE speed

SDC

2015 Storage

Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

REP REP REP REP [Y 7/ N\ ((\
CHUNK CHUNK CHUNK CHUNK DISK DISK REPLICA CHUNK
RENDEZVOUS
PUT PUT PUT PUT WRITE WRITE PUT PUT
XFER
REQUEST RESPONSE ACCEPT RECEIVED START COMPLETION ACK ACK
RECEIVED RECEIVED RECEIVED L _ J L \)

19

Simulation Results

9 11 13 15 17 19 21 23

1800 100%
1600 gW256C128K %9$9% +--————"—"———-
1400 4 80% T 8§ & & & f 0 0 f e
70% +H+HHHH+HHHHHHHHHHHE
1200 9020 RS, S .
60% t———————————————————— —
1000
NGH-R Chunks/ms 50% “-FEFFFFEFRFBFEFEFHFEFRHERHBHEERHE
8001 == CH-T Chunks/ms 20% “FEFFEEFEFEFRFREBMEFRERERBELEELE
600 - 30% 1 AR EEEEEEEEEEREERES
400 20 “FEEFEREEREFEFLERERERREHELELE
200 10% FEFFEFEERREREERREREELLEE
0 T 1 0% T 1
1 3 5 7 9 11 13 15 17 19 21 23
20000 30%
18000 —+ gw6b4c4K
16000 + 25%
14000 +— oo LA AL HRARRRRRRARANED
12000 +—
10000 +— NGH-R Chunks/ms 1g50p + - ..
8000 == CH-T Chunks/ms
6000 R O T T e
4000 S0 -
2000
o T 1 0% -1
1 3 5 7 9 11 13 15 17 19 21 23 L 3 5 7 9 11 13 15 17 19_721 23

SDC

- ‘}

2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

Busy Targets
m Busy Targets

Busy Targets
m Busy Targets

Simulation Results (cont-d)

800

700 +

gw64c128K

600 +—

500 +———— — ——— — — —

NGH-R Chunks/ms

400

300

=fl=CH-T Chunks/ms

100

200 xillllliillllﬂililiIi

O|||||||||||||||||||||||

1 3 5 7 9 11 13 15 17 19 21 23

2000

1800

gws12¢128K

1600 -+

1400 +—

1200 +— ——— —— ——— —— ———

1000 _WM

800

NGH-R Chunks/ms
== CH-T Chunks/ms

600

400

200

O|||||||||||||||||||||||

1 3 5 7 9 11 13 1517.19.21.23

SDC

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

100%
90%

80% -
70% -+
60% -+
50% -+
40% -+
30% -+
20%

10%
0%

11 13 15 17

19

21

23

2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

SIS 18l 1102 ;3

Busy Targets
m Busy Targets

Busy Targets
m Busy Targets

Simulation Results (last)

60000
gw256¢c4K
50000 -
40000 +—
30000 +— NGH-R Chunks/ms
=#—=CH-T Chunks/ms
0,
20000 80%
70%
10000 -
eo% +HH+H+-++—++HH+HHHHHHHHHHHe
0 T 0 o o e e
1 3 5 7 9 11 13 15 17 19 21 23
0% 4441 8% %3 % % 2 R R R R R R R R RRRROR Busy Targets
m Busy Targets
sos LR HE L
20% -+ = o E o E o E
10% - -1 -} -}
O% L T T T T T T T T T 22
123456 78 91011121314151617181920212223

'.. ‘}

- &
S D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved. ' (>
-

Conclusions

a3 Distributed storage clusters require technology that can
simultaneously optimize:

available IOPS (budget) of the backend
storage capacity
network utilization

7 To address all of the above, the mechanism must load
balance at runtime

Consistent Hashing = blind selection

0 Storage transport must be designed for scale-out and
replication (3 replicas, etc.)

1 Hence, NGH/Replicast
3 Source on the github..

23

s D ‘ 15 2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

What’s Next

Multicast

'y

NGH/Replicast

Unicast

[CH/Unicast]

>

SDC

Consistent Hash + Best Effort

Group Hash + sub-Group Load Balancing

2015 Storage Developer Conference. © Nexenta Systems, Inc. All Rights Reserved.

c §@ .. :
S D 15 2015 Storage Developer Conference. © Nexenta Systems, Ia All Rigl% Reserved.
- -

