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The Scale of Disruption 
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 This presentation: 

Existing technology vs. massive scale 

There are in fact better alternatives.. 
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Distribution 

Mechanism 
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Storage 

Transport 

 

Unicast (TCP) 
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Distribution & Replication Mechanism: 

Data & Metadata 
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TOE (data storage) 
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Root of Everything 

Unstructured 

Local Distributed 

Namespace Stripe 
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1980s 2015 
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Increasing Decentralization 
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1980s 

 

1. Allocate block or stripe 

2. Record the location in the 

parent’s table 

3. Write… 

2010s 

 

1. Map name or chunk 

to target 

2. Let the target take 

care of the rest  
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Storage Targets 

I/O pipeline(*): unstructured, distributed and striped 
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Data Stripes  

(Blocks, Chunks, Shards) 

Map to 
locations 

Read Write Replicate 

Metadata (references 
unnamed chunks) 

Map to 
locations 

Read Write Replicate 

Name 

Map to metadata 

Name, 

Metadata, 

Chunk, 

… 

Stripe, 

Block 

Chunk, 

… 

0xb13f7… 

0x85ac4… 

0xfe291… 

0x35d1e… 

… 
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Quick Recap 
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Conventional 
 

New 

Data 

Distribution 

Mechanism 

 

Consistent Hashing Group Hashing (NGH) 

Storage 

Transport 
 

TCP 

 

Multicast (Replicast™) 

 Next: 

CH vs. NGH 

TCP/Unicast vs. Replicast 

Simulation: model, results, charts 
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Consistent Hashing 

 Openstack's Object Storage Service Swift 

 Amazon's storage system Dynamo 

 Apache Cassandra 

 Voldemort 

 Riak 

 GlusterFS 

 Ceph* 

 … 
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Name, 

Metadata, 

Chunk, 

… 

0xb13f7… 

0x85ac4… 

0xfe291… 

0x35d1e… 

 Trademarks listed here and elsewhere in this presentation are property of their respective owners  
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Ceph vs. Consistent Hashing 
 Input: 

CRUSH MAP aka Cluster Map 

Placement Groups 

 OSDs aka devices 

 OSD weights 

Rules: data redundancy  

Replica 

 Output: 

Pseudo-random uniform hash across failure 

domains – binomial(n, p) 

 Problems: 

Same as CH – see next 
9 

• Simplified  CRUSH: 
HASH(node, replica) 

 
• Rendezvous  hashing: 

HASH(node, replica) 
 
• Consistent  hashing: 

HASH(replica) 
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Consistent Hashing: the good, the bad… 
 The good 

better than hash(chunk) % n-servers 

even better when used with virtual nodes (partitions) 

 The bad 

Balls-into-Bins: load  log⁡(𝑛): congestion “ripples” 

Subject to binomial spikes 

 The ugly 

Hashing determinism vs. Load balancing: either/OR 

Worse for larger clusters 

Much worse at a high utilization 

 Is too consistent..  
10 
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NGH: How it works 
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GW NGx 

GW 

switch 

 

 

NGx 

Si Sj Sk 

 Min(*) size NG = 6 

 Simulating 9 targets per NG 

 Must select 3 best bids 
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Why NGH 
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 Admit: we simply don’t know enough about the state on the 

edge 

 Accept it. 

 Main principles and motivations: 

 Serial transmit: one chunk at a time 

 Per-disk dedicated thread: one chunk at a time 

 Edge-based load balancing as part of the datapath 

 Edge-based reservation of link bandwidth: 

 
 Storage Target  to Gateway: 

 begin = NOW + F(queue-

depth, cache-size, link bw) 

 end = begin + G(chunk-size) a BID 
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Storage Transport: 

Data & Control 

13 
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Unicast vs. Persistent Redundancy 

 Typical: put(…) blocks until 3 copies get persistently stored on 

3 storage servers (variations: RAIN, EE, 2 cached, etc.) 

 IO pipeline: redundancy – first, completion – second 

 Daisy Chain Replication 

14 

  put r3  put r2  put r1 get r1 put (replicate) r1 
Storage 

Server switch 

 Sustained get() rate  G 

 + Sustained single-replica put() rate P 

 + Daisy chain 

 

 New get() rate (%): 

G * 100/ (G + P) 

Gateway 
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TCP: the good, the bad…  

 The good: 

 Predominant, totally integrated and reliable 

 The bad: 

 Was never designed for scale-out storage clusters 

 The ugly: 

 Unicast – previous slide 

 TCP incast – “is a catastrophic TCP throughput collapse…” 

 TCP “outcast” – converged and hyper-converged clusters 

 Time to converge >> RTO 

 However: 

 DCB helps 

 Custom/proprietary TCP kernels will help as well.. 15 
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TCP Simulation 

16 

 Each chunk put: 3 successive  

   TCP transmissions 

 ACK every received replica 

 ACK delivery time = chunk reception time + ½ * RTT 

 Future-perfect TCP Congestion Protocol: Instant 

Convergence  

 N flows to one target, each instantly adjusting to use 1/Nth 

of the 10GE bandwidth  

 TCP receive window and Tx buffer sizes unlimited 

 Zero per-chunk overhead 

 Simulating TCP as a quintessential perfect Unicast 
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Replicast Simulation 

17 

The (simulated) penalty is on 
Replicast: 
 
• +RTT per-chunk overhead 
  
• Note: TCP is benchmarked 

with (0) zero overhead 
 
• Replicast still wins.. 
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Tire Kicking 

 https://github.com/Nexenta/nedge-sim 

 ./build-ndebug 

 ./do_benchmarks.sh  

 Example: 
 ./test ngs 128 chunk_size 128 gateways 512 duration 100 

 Extensive comments inside 

 Detailed log tracking of each transaction 

 Logs for the cited runs can be reproduced at ff5fbda 

 Default Comment 

#define CLUSTER_TRIP_TIME               10000  // approximately 1us; RTT = 2us 

#define N_REPLICAS                                      3 // replicas of each stored chunk 

#define MBS_SEC_PER_TARGET_DRIVE 400 // 400MB/s (eMLC) 

https://github.com/Nexenta/nedge-sim
https://github.com/Nexenta/nedge-sim
https://github.com/Nexenta/nedge-sim
https://github.com/Nexenta/nedge-sim
https://github.com/Nexenta/nedge-sim/commit/ff5fbda7c2967844d8c012d8e121c7c13db214fd
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I/O Pipelines: CH/TCP and NGH/Replicast 

CHUNK 

PUT 
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REP 

CHUNK 

PUT 

REQUEST 

RECEIVED 

REP 

CHUNK 
PUT 

RESPONSE 

RECEIVED 

REP 

CHUNK 

PUT 

ACCEPT 

RECEIVED 

REP 

RENDEZVOUS 

XFER 

RECEIVED 

DISK 

WRITE 

START 

DISK 

WRITE 

COMPLETION 

REPLICA 

PUT 

ACK 

CHUNK 

PUT 

ACK 
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CHUNK 

PUT 

READY 

TCP 

XMIT 

RECEIVED 

TCP 

RECEPTION 

COMPLETE 

TCP 

RECEPTION 

ACK 

DISK 

WRITE 

START 

DISK 

WRITE 

COMPLETION 

REPLICA 

PUT 

ACK 

CHUNK 

PUT 

ACK 

Event loop executing Tick by Tick, where 
one Tick = 1 bit-time at 10GbE speed 
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Simulation Results 

20 
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Simulation Results (cont-d) 
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Simulation Results (last) 
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Conclusions 

 Distributed storage clusters require technology that can 

simultaneously optimize: 

 available IOPS (budget) of the backend 

 storage capacity 

 network utilization 

 To address all of the above, the mechanism must load 

balance at runtime 

 Consistent Hashing = blind selection 

 Storage transport must be designed for scale-out and 

replication (3 replicas, etc.) 

 Hence, NGH/Replicast 

 Source on the github.. 
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What’s Next 

Unicast 

Multicast 

Consistent Hash + Best Effort Group Hash + sub-Group Load Balancing 

CH/Unicast 

NGH/Replicast 
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Q & A 

25 


