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Emerging Trends 

Increased computational power… 
 Huge expansion of simulation data volume & 

metadata complexity 

 Complex to manage and analyze 

…achieved through parallelism 
 100,000s nodes with 10s millions cores 

 More frequent hardware & software failures 

Tiered storage architectures 
 High performance fabric & solid state storage on-cluster 

 Low performance, high capacity disk-based storage off-cluster 



Disruptive Change 

NVRAM + Integrated fabric 
 Byte-granular storage access 

 Sub-µS storage access latency 

 µS network latency 

Conventional storage software 

 Block granular access limits scaling 

 High overhead 
 10s µS lost to communications S/W 

 100s µS lost to  F/S & block I/O stack 

 

 

I/O stack requirements 
 Minimal software overhead 

 OS bypass 
– Communications 
– Latency sensitive I/O 

 Fail-out resilience 

 Persistent Memory storage 
 Filesystem & application metadata / hot data 

 Block storage 
 SSD – warm data / Disk – lukewarm data 
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Storage Architecture 

Compute Node NVRAM 
 Hot data 

 High valence & velocity 

 Brute-force, ad-hoc analysis 

 Extreme scale-out 

 Full fabric bandwidth 
 O(1PB/s)→O(10PB/s) 

 Extremely low fabric & NVRAM latency 
 Extreme fine grain  

 New programming models 

 

I/O Node NVRAM/SSD 
 Semi-hot data / staging buffer 

 Fractional fabric bandwidth 
 O(10TB/s)→O(100TB/s) 

Parallel Filesystem NVRAM/SSD/Disk 
 Site-wide shared warm storage 

 SAN limited – O(1TB/s)→O(10TB/s) 

 Indexed data 
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On-cluster (hot) storage requirements 

Scalable capacity  
 O(10x) system DRAM 

Scalable throughput 

 Significant fraction of fabric bandwidth 

 Significant fraction of fabric injection rate 

Data integrity & consistency  
 Tunable resilience/availability 

 No silent failures 

 Safe overwrite 

Minimal usage constraints 
 Global namespaces 

 System namespace shared across jobs 
– Connected workflows 

 Object namespaces shared across processes 
– Encapsulating entire simulation datasets 

 Fine grained, random, massively concurrent 

Minimal interference 
 Data movement by unrelated workflows 

Security 
 Authorized/authenticated access 

 



Global Namespaces 

Containers 
 Shared System Namespace 

 “Where’s my stuff” 

 Private Namespaces 
 “My stuff” 
 Entire simulation datasets 

Multiple Schemas 
 POSIX* 

 Shared (system) & Private (legacy datasets) 
 No discontinuity for application developers 

 Scientific: HDF5*, ADIOS*, SciDB*, … 
 Big Data:  HDFS*, Spark*, Graph Analytics, 

… 
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Distributed Application Object Storage 

Exascale I/O stack 
 Extreme scalability, ultra fine grain 
 Integrity, availability, resilience 

 Unified model over all storage tiers site-wide 

Multiple Top Level APIs 
 Domain-specific APIs  

 High-level data models 

DAOS-CT: Caching and Tiering 
 Data migration over storage tiers 

 Guided by usage metadata 
 Driven by system resource manager 

 
 

 

 

 

DAOS-SR: Sharding and Resilience 
 Scaling throughput over storage nodes 

 Fail-out resilience across storage nodes 

DAOS-M: Persistent Memory Object Storage 
 Ultra-low latency / fine grain I/O 

 Fine-grain versioning  & global consistency 

 Location (latency & fault domain) aware 

 

 

Applications 
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Transactions 

Why 
 Simplify application development 

 Safe update in-place 

 Guaranteed data model consistency 

 Concurrent producer/consumer workflows 

 Support resilience schemas 
 Guaranteed consistency for 

redundant distributed data 

 Support tiered storage 
 Preserve integrity on data migration  

 

 

 

How 
 Multi-version concurrency control 

 Snapshot consistency on read 

 Maximize concurrency/asynchrony 

 Process groups 
 Arbitrary numbers of collaborating processes 

 Arbitrary numbers of storage targets 

 Leader commit/snap/migrate 
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DAOS-M Object Storage 

Multiple Independent Object Address Spaces 
 Versioning Object PGAS 

 Container = {container shards} + metadata 
 Container Shard = {objects} 

– Object = KV store or byte array 
– Sparsity exposed 

 Metadata = {shard list, commit state} 
– Minimal 
– Resilient (Replicated state machine) 

Maximum concurrency 
 Byte-granular MVCC 

 Deferred integration of mutable data 

 Writes eagerly accepted in arbitrary order 

 Reads sample requested version snapshot 

 

 

Distributed Transactions 

 Prepare: Send updates tagged with version ‘t’ 

 Commit: Mark version ‘t’ committed in container MD 
 Version ‘t’ now immutable and globally consistent 

 Abort: Discard version ‘t’ updates everywhere 

Low latency 

 End-to-end OS bypass 

 Persistent Memory server  

 Userspace fabric drivers 
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DAOS-M latency sensitive server operations 

Byte array objects 
 Write (log data) 
 Allocate extent buffer in NVRAM 
 Copy immediate / RDMA READ remote 
 Insert into persistent extent.version index 

 Read (data integration) 
 extent.version index traversal => gather descriptor 
 RDMA WRITE remote 

Key-Value objects 

 Insert/remove/retrieve value into key.version table 
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Sharding & Resilience 

Multiple mixed schemas 
Performance schemas 
 Scale IOPs & bandwidth 

Resilience schemas 
 Data integrity 

 Checksums + data stored separately 

 N-way replication 
 High performance for shared write objects 

 Erasure codes 
 High efficiency for non-shared objects 

 Asynchronous refactor, scrub & repair 
 Exploit immutability of committed data 

Leverage DAOS-M 

 Distributed consistency 

 Sparsity 

Scaling Requirements 

 Onerous! 
 Aliasing of access & distribution patterns 
 Bulk synchronous workload == Amdahl's law vector 

 Extreme object size dynamic range 
 “Megaliths” v. “grains of sand” 

 Declustering 
 Rebalance on node addition 
 Distributed rebuild on node failure 

 

 

 

 



Sharding & Resilience 
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Algorithmic (O(0)) layout metadata 
 Consistent hash randomizes placement 

 Replicas placed adjacently 
 Hash must guarantee minimum separation 

of nodes in same fault domain 

 Multiple hash rings for declustering 

Explicit (O(n)) layout metadata 
 Layout responsive to usage 

 Preserve locality / feed “hungriest mouth” 

 O(0) structures used to store layout 
 

Hash (object ID) 

Hash (object ID) 

Fault 
domain 

separation 



Caching & Tiering 

Metadata 
 Residence maps 

 Whole object maintained directly 
 Sub-object leverages lower layers 

 Access patterns 
 Historical 
 Explicit notification by upper levels 
 Data “colouring” 

Data migration 
 Resharding between tiers 

 Maintain distributed object semantics 
 Maximize performance on subsequent access 
 Select appropriate resiliency schemas 

 
 

 

 
 

 

 
 
 
Explicit control 
 Persist & prestage APIs / JCL 

 System resource manager driven migration 
 Rebalance & minimize interference 

Transparent caching 
 Write-back & demand cache 

 Prefetch guided by usage metadata 

 Residence maps  
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Top level I/O APIs 

POSIX Containers 
 POSIX namespace over DAOS-HA 

objects 
 Dynamically sharded directories & files 

 Private POSIX namespaces 
 Library for parallel applications and 

middleware targeting POSIX 

 System POSIX namespace 
 Parallel server exporting shared namespace 

DAOS for application programmers 
 Simplified APIs 

 Distributed Persistent Memory 

 

 

 

 

High level HPC object databases 
 Complex application datatypes & metadata 

 HDF5 + derivatives / ADIOS / SciDB etc… 

Big Data 
 HDFS compatibility layer 

 Hadoop ecosystem 

 Spark / Graph Analytics etc… 
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NVRAM Storage Revolution 

Cost-effective storage & fabric integration 
 Challenge: Extreme scale-out 

 Amdahl’s law 
 Fault Tolerance 

 Reward: Storage @ full fabric bandwidth 
 O(1000) increase in data velocity 

Byte-granular data access @ uS latency 
 Challenge: Deliver benefit to applications 

 Software overhead of conventional storage & communications stacks 
 Reward: Ultra fine-grain access 

 Remove constraints on applications 
 Enable new programming models 
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