
DAOS
An Architecture for Extreme Scale Storage
Eric Barton
High Performance Data Division
Intel

2

Legal Information
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.
• Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer

or retailer or learn more at http://www.intel.com/content/www/us/en/software/intel-solutions-for-lustre-software.html.
• Intel may make changes` to specifications and product descriptions at any time, without notice.
• Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for

release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of
any product or services and any such use of Intel's internal code names is at the sole risk of the user.

• Intel, Intel Inside, the Intel logo and Xeon Phi are trademarks of Intel Corporation in the United States and other countries.
• Material in this presentation is intended as product positioning and not approved end user messaging.
*Other names and brands may be claimed as the property of others.
© 2015 Intel Corporation

http://www.intel.com/design/literature.htm

Emerging Trends

Increased computational power…
 Huge expansion of simulation data volume &

metadata complexity

 Complex to manage and analyze

…achieved through parallelism
 100,000s nodes with 10s millions cores

 More frequent hardware & software failures

Tiered storage architectures
 High performance fabric & solid state storage on-cluster

 Low performance, high capacity disk-based storage off-cluster

Disruptive Change

NVRAM + Integrated fabric
 Byte-granular storage access

 Sub-µS storage access latency

 µS network latency

Conventional storage software

 Block granular access limits scaling

 High overhead
 10s µS lost to communications S/W

 100s µS lost to F/S & block I/O stack

I/O stack requirements
 Minimal software overhead

 OS bypass
– Communications
– Latency sensitive I/O

 Fail-out resilience

 Persistent Memory storage
 Filesystem & application metadata / hot data

 Block storage
 SSD – warm data / Disk – lukewarm data

Persistent
Memory

Block
Storage

Integrated
Fabric

Storage Architecture

Compute Node NVRAM
 Hot data

 High valence & velocity

 Brute-force, ad-hoc analysis

 Extreme scale-out

 Full fabric bandwidth
 O(1PB/s)→O(10PB/s)

 Extremely low fabric & NVRAM latency
 Extreme fine grain

 New programming models

I/O Node NVRAM/SSD
 Semi-hot data / staging buffer

 Fractional fabric bandwidth
 O(10TB/s)→O(100TB/s)

Parallel Filesystem NVRAM/SSD/Disk
 Site-wide shared warm storage

 SAN limited – O(1TB/s)→O(10TB/s)

 Indexed data

Compute
Nodes (NVRAM)

I/O Nodes
(NVRAM,
SSD)

Compute
Fabric

Site-wide
Storage
Fabric

Parallel Filesystem
(NVRAM, SSD, Disk)

Compute Cluster

On-cluster (hot) storage requirements

Scalable capacity
 O(10x) system DRAM

Scalable throughput

 Significant fraction of fabric bandwidth

 Significant fraction of fabric injection rate

Data integrity & consistency
 Tunable resilience/availability

 No silent failures

 Safe overwrite

Minimal usage constraints
 Global namespaces

 System namespace shared across jobs
– Connected workflows

 Object namespaces shared across processes
– Encapsulating entire simulation datasets

 Fine grained, random, massively concurrent

Minimal interference
 Data movement by unrelated workflows

Security
 Authorized/authenticated access

Global Namespaces

Containers
 Shared System Namespace

 “Where’s my stuff”

 Private Namespaces
 “My stuff”
 Entire simulation datasets

Multiple Schemas
 POSIX*

 Shared (system) & Private (legacy datasets)
 No discontinuity for application developers

 Scientific: HDF5*, ADIOS*, SciDB*, …
 Big Data: HDFS*, Spark*, Graph Analytics,

…

`

Compute
Nodes

I/O
Nodes

System Namespace +
Warm/staging datasets

Compute Cluster

Hot datasets

System Namespace /projects

/posix /Particle /Climate

HDF5 dataset

data data data data dataset

group

data data data data dataset

group

data data data data dataset

group

group

ADIOS dataset POSIX dataset

data data data data file

dir

data data data data file

dir

data data data data file

dir

dir

Distributed Application Object Storage

Exascale I/O stack
 Extreme scalability, ultra fine grain
 Integrity, availability, resilience

 Unified model over all storage tiers site-wide

Multiple Top Level APIs
 Domain-specific APIs

 High-level data models

DAOS-CT: Caching and Tiering
 Data migration over storage tiers

 Guided by usage metadata
 Driven by system resource manager

DAOS-SR: Sharding and Resilience
 Scaling throughput over storage nodes

 Fail-out resilience across storage nodes

DAOS-M: Persistent Memory Object Storage
 Ultra-low latency / fine grain I/O

 Fine-grain versioning & global consistency

 Location (latency & fault domain) aware

Applications

Top-level APIs

DAOS-SR

DAOS-M

Tools

DAOS-CT

Transactions

Why
 Simplify application development

 Safe update in-place

 Guaranteed data model consistency

 Concurrent producer/consumer workflows

 Support resilience schemas
 Guaranteed consistency for

redundant distributed data

 Support tiered storage
 Preserve integrity on data migration

How
 Multi-version concurrency control

 Snapshot consistency on read

 Maximize concurrency/asynchrony

 Process groups
 Arbitrary numbers of collaborating processes

 Arbitrary numbers of storage targets

 Leader commit/snap/migrate

Uncommitted (volatile) Committed (immutable)

Highest
Committed

Epoch

Writers
&

Inconsistent
Readers

Consistent
Readers

Named Snapshots Lowest
Open
Epoch

DAOS-M Object Storage

Multiple Independent Object Address Spaces
 Versioning Object PGAS

 Container = {container shards} + metadata
 Container Shard = {objects}

– Object = KV store or byte array
– Sparsity exposed

 Metadata = {shard list, commit state}
– Minimal
– Resilient (Replicated state machine)

Maximum concurrency
 Byte-granular MVCC

 Deferred integration of mutable data

 Writes eagerly accepted in arbitrary order

 Reads sample requested version snapshot

Distributed Transactions

 Prepare: Send updates tagged with version ‘t’

 Commit: Mark version ‘t’ committed in container MD
 Version ‘t’ now immutable and globally consistent

 Abort: Discard version ‘t’ updates everywhere

Low latency

 End-to-end OS bypass

 Persistent Memory server

 Userspace fabric drivers

O
bj

ec
t

DAOS-M latency sensitive server operations

Byte array objects
 Write (log data)
 Allocate extent buffer in NVRAM
 Copy immediate / RDMA READ remote
 Insert into persistent extent.version index

 Read (data integration)
 extent.version index traversal => gather descriptor
 RDMA WRITE remote

Key-Value objects

 Insert/remove/retrieve value into key.version table

Write, Version, Extent, data

Request Queues

Index

Extents

Ve
rs

io
n Being written

Committed

Insert

Write, Version, Extent, RMA

Read, Version, Extent, RMA

Traverse

Sharding & Resilience

Multiple mixed schemas
Performance schemas
 Scale IOPs & bandwidth

Resilience schemas
 Data integrity

 Checksums + data stored separately

 N-way replication
 High performance for shared write objects

 Erasure codes
 High efficiency for non-shared objects

 Asynchronous refactor, scrub & repair
 Exploit immutability of committed data

Leverage DAOS-M

 Distributed consistency

 Sparsity

Scaling Requirements

 Onerous!
 Aliasing of access & distribution patterns
 Bulk synchronous workload == Amdahl's law vector

 Extreme object size dynamic range
 “Megaliths” v. “grains of sand”

 Declustering
 Rebalance on node addition
 Distributed rebuild on node failure

Sharding & Resilience

13

Algorithmic (O(0)) layout metadata
 Consistent hash randomizes placement

 Replicas placed adjacently
 Hash must guarantee minimum separation

of nodes in same fault domain

 Multiple hash rings for declustering

Explicit (O(n)) layout metadata
 Layout responsive to usage

 Preserve locality / feed “hungriest mouth”

 O(0) structures used to store layout

Hash (object ID)

Hash (object ID)

Fault
domain

separation

Caching & Tiering

Metadata
 Residence maps

 Whole object maintained directly
 Sub-object leverages lower layers

 Access patterns
 Historical
 Explicit notification by upper levels
 Data “colouring”

Data migration
 Resharding between tiers

 Maintain distributed object semantics
 Maximize performance on subsequent access
 Select appropriate resiliency schemas

Explicit control
 Persist & prestage APIs / JCL

 System resource manager driven migration
 Rebalance & minimize interference

Transparent caching
 Write-back & demand cache

 Prefetch guided by usage metadata

 Residence maps

HDF5 dataset

data data data data dataset

group

data data data data dataset

group

group

Tiering
Meta-
data

HDF5 dataset

data data data data dataset

group

data data data data dataset

group

data data data data dataset

group

group

Tiering
Meta-
data

“Near” storage “Far” storage

dirty

clean

miss

Prefetch &
Writeback

Top level I/O APIs

POSIX Containers
 POSIX namespace over DAOS-HA

objects
 Dynamically sharded directories & files

 Private POSIX namespaces
 Library for parallel applications and

middleware targeting POSIX

 System POSIX namespace
 Parallel server exporting shared namespace

DAOS for application programmers
 Simplified APIs

 Distributed Persistent Memory

High level HPC object databases
 Complex application datatypes & metadata

 HDF5 + derivatives / ADIOS / SciDB etc…

Big Data
 HDFS compatibility layer

 Hadoop ecosystem

 Spark / Graph Analytics etc…

16

NVRAM Storage Revolution

Cost-effective storage & fabric integration
 Challenge: Extreme scale-out

 Amdahl’s law
 Fault Tolerance

 Reward: Storage @ full fabric bandwidth
 O(1000) increase in data velocity

Byte-granular data access @ uS latency
 Challenge: Deliver benefit to applications

 Software overhead of conventional storage & communications stacks
 Reward: Ultra fine-grain access

 Remove constraints on applications
 Enable new programming models

	DAOS�An Architecture for Extreme Scale Storage
	Legal Information
	Emerging Trends
	Disruptive Change
	Storage Architecture
	On-cluster (hot) storage requirements
	Global Namespaces
	Distributed Application Object Storage
	Transactions
	DAOS-M Object Storage
	DAOS-M latency sensitive server operations
	Sharding & Resilience
	Sharding & Resilience
	Caching & Tiering
	Top level I/O APIs
	NVRAM Storage Revolution
	Slide Number 17

