
Haoyuan Li, Tachyon Nexus 
haoyuan@tachyonnexus.com 

September 22, 2015 @ SDC 2015

A Reliable Memory-Centric
Distributed Storage System

•  Team consists of Tachyon creators, top contributors,
people from UC Berkeley, Google, CMU, VMware, Stanford,
Facebook, etc.

•  $7.5 million Series A from Andreessen Horowitz 

•  Committed to Tachyon Open Source 

2

3

Outline

•  Overview

– Motivation

– Tachyon Architecture

– Using Tachyon

•  Open Source

– Status

– Production Use Cases

•  Roadmap

4

Outline

•  Overview

– Motivation

– Tachyon Architecture

– Using Tachyon

•  Open Source

– Status

– Production Use Cases

•  Roadmap

5

Tachyon: Born in UC Berkeley AMPLab

6

Cluster manager
 Parallel computation
framework

Reliable, distributed memory-centric storage system

7

Why Tachyon?

Memory is Fast

•  RAM throughput  
increasing exponentially

•  Disk throughput
increasing slowly

8
Memory-locality key to interactive response times

Memory is Cheaper

source:	
 jcmit.com	

9

Realized by many…

10

11

Is the

Problem Solved?

12

Missing a Solution
for the Storage Layer

An Example: -

•  Fast, in-memory data processing framework

– Keep one in-memory copy inside JVM

– Track lineage of operations used to derive data

– Upon failure, use lineage to recompute data

map

filter
 map

join
 reduce

Lineage Tracking

13

Issue 1

14

Data Sharing is the bottleneck in
analytics pipeline: 
Slow writes to disk

Spark Job1

Spark mem

block manager

block 1

block 3

Spark Job2

Spark mem

block manager

block 3

block 1

HDFS / Amazon S3

block 1

block 3

block 2

block 4

storage engine &

execution engine

same process

(slow writes)

Issue 1

15

Spark Job

Spark mem

block manager

block 1

block 3

Hadoop MR Job

YARN

HDFS / Amazon S3

block 1

block 3

block 2

block 4

Data Sharing is the bottleneck in
analytics pipeline: 
Slow writes to disk

storage engine &

execution engine

same process

(slow writes)

Issue 2

16

Spark Task

Spark memory

block manager

block 1

block 3

HDFS / Amazon S3

block 1

block 3

block 2

block 4

execution engine &  
storage engine

same process

Cache loss when process
crashes

Issue 2

17

crash

Spark memory

block manager

block 1

block 3

HDFS / Amazon S3

block 1

block 3

block 2

block 4

execution engine &  
storage engine

same process

Cache loss when process
crashes

HDFS / Amazon S3

Issue 2

18

block 1

block 3

block 2

block 4

execution engine &  
storage engine

same process

crash

Cache loss when process
crashes

HDFS / Amazon S3

Issue 3

19

In-memory Data Duplication &

Java Garbage Collection

Spark Task1

Spark mem

block manager

block 1

block 3

Spark Task2

Spark mem

block manager

block 3

block 1

block 1

block 3

block 2

block 4

execution engine &  
storage engine

same process

(duplication & GC)

Tachyon

Reliable data sharing at

memory-speed within and across

cluster frameworks/jobs

20

Technical Overview

Ideas

•  A memory-centric storage architecture

•  Push lineage down to storage layer

•  Manage tiered storage

Facts

•  One data copy in memory

•  Re-computation for fault-tolerance

21

Eco-System	

22

Tachyon Memory-Centric
Architecture

23

Tachyon Memory-Centric
Architecture

24

Lineage in Tachyon

25

Issue 1 revisited

26

Memory-speed data sharing 
among jobs in different

frameworks

execution engine &  
storage engine

same process

(fast writes)

Spark Job

Spark mem

Hadoop MR Job

YARN

HDFS / Amazon S3

block 1

block 3

block 2

block 4

HDFS	

disk	

block	
 1	

block	
 3	

block	
 2	

block	
 4	

Tachyon"
in-memory

block 1

block 3
 block 4

HDFS / Amazon S3

block 1

block 3

block 2

block 4

Tachyon"
in-memory

block 1

block 3
 block 4

Issue 2 revisited

27

Spark Task

Spark memory

block manager

execution engine &  
storage engine

same process

Keep in-memory data safe, 
even when a job crashes.

Issue 2 revisited

28

HDFS	

disk	

block	
 1	

block	
 3	

block	
 2	

block	
 4	

execution engine &  
storage engine

same process

Tachyon"
in-memory

block 1

block 3
 block 4

crash

HDFS / Amazon S3

block 1

block 3

block 2

block 4

Keep in-memory data safe, 
even when a job crashes.

Issue 3 revisited

29

No in-memory data duplication, 
much less GC

Spark Task

Spark mem

Spark Task

Spark mem

HDFS / Amazon S3

block 1

block 3

block 2

block 4

execution engine &  
storage engine

same process

(no duplication & GC)

HDFS	

disk	

block	
 1	

block	
 3	

block	
 2	

block	
 4	

Tachyon"
in-memory

block 1

block 3
 block 4

Comparison with In-Memory HDFS

30

Outline

•  Overview

– Motivation

– Tachyon Architecture

– Using Tachyon

•  Open Source

– Status

– Production Use Cases

•  Roadmap

31

Open Source Status

•  Started at UC Berkeley AMPLab in Summer 2012 

•  Apache License 2.0, Version 0.7.1 (August 2015)

•  Deployed at > 50 companies (July 2014)

•  30+ Companies Contributing

32

Contributors Growth

33

v0.4"
Feb ‘14

v0.3"
Oct ‘13

v0.2

Apr ‘13

v0.1

Dec ‘12

v0.6"
Mar ‘15

v0.5"
Jul ‘14

v0.7"
Jul ‘15

1
 3

15

30

46

70

111

Codebase Growth

34

v0.4"
Feb ‘14

v0.3"
Oct ‘13

v0.2

Apr ‘13

v0.6"
Mar ‘15

v0.5"
Jul ‘14

v0.7"
Jul ‘15

465 
commits

696

commits

1080

commits

1610

commits

2884

commits

5021

commits

Thanks to Our Contributors!

35

Reported Tachyon Usage

36

Under Filesystem Choices
(Big Data, Cloud, HPC, Enterprise)

37

Use Case: Baidu

•  Framework: SparkSQL

•  Under Storage: Baidu’s File System

•  Storage Media: MEM + HDD

•  100+ nodes deployment

•  1PB+ managed space

•  30x Performance Improvement

38

Use Case: a SAAS Company

•  Framework: Impala

•  Under Storage: S3

•  Storage Media: MEM + SSD

•  15x Performance Improvement

39

Use Case: an Oil Company

•  Framework: Spark

•  Under Storage: GlusterFS

•  Storage Media: MEM only

•  Analyzing data in traditional storage

40

Use Case: a SAAS Company

•  Framework: Spark

•  Under Storage: S3

•  Storage Media: SSD only

•  Elastic Tachyon deployment

41

Outline

•  Overview

– Motivation

– Tachyon Architecture

– Using Tachyon

•  Open Source

– Status

– Production Use Cases

•  Roadmap

42

New Features

•  Lineage in Storage (alpha)

•  Tiered Storage (alpha)

43

New Features

•  Lineage in Storage (alpha)

•  Tiered Storage (alpha)

•  Data Serving

•  Support for New Hardware

•  …

•  Your New Feature!

44

45

Tachyon’s Goal?

Distributed Memory-Centric Storage: 
Better Assist Other Components

Welcome Collaboration!

46

JIRA New Contributor Tasks

•  Website: http://tachyon-project.org 

•  Github: https://github.com/amplab/tachyon 

•  Meetup: http://www.meetup.com/Tachyon 

•  News Letter Subscription: http://goo.gl/mwB2sX

•  Email: haoyuan@tachyonnexus.com

47

