
2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Integrity of In-memory Data Mirroring
in Distributed Systems

Tejas Wanjari
EMC Data Domain

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Problem Definition

 In-memory data is changing
 Disk checksums are for the older state
 Mirroring cannot rely on disk checksums
 Undetected corruptions are not acceptable
 Reliability is prime (e.g. Backup/Recovery Systems)

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Sources of Corruption during Mirroring

 System failure
“Clean” shutdown and reboot

 Hardware failure
Redundant failover

 Disks failure
Disk/filesystem checksums

 Process corruption
 Avoiding copying without checksums

 Network corruption
Application/protocol checksums

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

TCP Checksum Vulnerability

 TCP Checksum: 4 bytes & weak
 Prone to False Positives (FPs)
Wrong data, correct checksum

 Failure probability: 1 in 16 million to 10 billion
packets for 1526 bytes [Reference: [1] Stone et. al., When
the CRC and TCP checksum disagree]

 Implies 1 undetected TCP corruption in 20GB to
1.2TB data, approximately

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Strong checksum in Application?

 Performance overhead
Application data-structures different from network

data-structures (e.g. B-tree data to fit into MTU)
“Interconnect or network” is the vulnerability, not

the application
 End up reinventing transport protocol in

application (over TCP!)
Handling retransmissions, in-order delivery, gaps,

etc.

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Ideal Solution

 Zero-copying: avoid multiple copies without
checksums

 H/w redundancy for hardware failures
 Clean shutdowns on system failures
 Filesystem/block/disk checksums for disk

reliability
 Bridging the integrity gap in

network/interconnect
Protection in transport protocol

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Why reinvent the wheel?

 RFC 2385: TCP MD5 Signature Option
 Implemented in Linux Kernel as TCP_MD5SIG

socket option
 Linux implementation:
Efficient compute (uses kernel crypto-engine)

 Retransmission on checksum mismatch
 Implies seamless error-recovery

 Reduces syscalls by calling /dev/crypto from
within kernel. Thus, lesser
copy_to_user/copy_from_user and smaller memory
footprint.

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Working of TCP_MD5SIG socketopt

 Both client and server must know each others’:
IP
Port
MD5 Key

before the connection is setup
 Client must bind() for the server to save the

<IP,Port,MD5Key> mapping

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

TCP_MD5SIG over Socket

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Evaluation: Latency

0

20

40

60

80

100

120

256 512 1024 2048 4096 6144 8192

R
ou

nd
 T

ri
p

T
im

e
(u

-s
ec

on
ds

)

TCP payload (bytes)

no-MD5
TCP_MD5SIG
User MD5

1 Thread - 1 Socket - 1 CPU
9000 bytes MTU
10Gbps Ethernet

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Evaluation: Throughput (Single-threaded)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

256 512 1024 2048 4096 6144 8192

T
hr

ou
gh

pu
t

(G
bp

s)

TCP payload (bytes)

TCP_MD5SIG
User MD5

1 Thread - 1 Socket - 1 CPU
9000 bytes MTU
10Gbps Ethernet

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Evaluation: Throughput - TCP_MD5SIG
(Multi-threaded)

0

2

4

6

8

10

12

256 512 1024 2048 4096 6144 8192

T
hr

ou
gh

pu
t

(G
bp

s)

TCP payload (bytes)

10 threads
20 threads
30 threads
40 threads
50 threads
60 threads

9000 bytes MTU
10Gbps Ethernet
60 CPU cores

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Evaluation: Memory Footprint
(accessing /dev/crypto from userspace)

0

5000

10000

15000

20000

25000

30000

35000

256 512 1024 2048 4096 6144 8192

M
em

or
y

Fo
ot

pr
in

t
(b

yt
es

)

TCP payload (bytes)

TCP_MD5SIG
User MD5

copy_from_user / copy_to_user
TCP_MD5SIG: 2 socket syscalls
User MD5: 2 socket syscalls

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Use-Case: NVM Mirroring

0
50000

100000
150000
200000

8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

T
hr

ou
gh

pu
t

(r
eq

s/
s)

TCP payload (bytes)

TCP_MD5SIG (reqs/s)
no-MD5 (reqs/s)

0
500

1000
1500
2000

8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

T
hr

ou
gh

pu
t

(M
bp

s)

TCP payload (bytes)

TCP_MD5SIG (Mbps)
no-MD5 (Mbps)

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Conclusion

 Not a generic solution
First try other fits:

 TCP checksum not good enough for the application?
 Disk/filesystem checksum
 Disk/flash mirroring

 But very effective for typical usecases
For line-speed mirroring of in-memory data:

 Better throughput, memory footprint and same latency

Error detection and recovery seamless to
application

 Future prospects: Persistent Memory

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

References

[1] Jonathan Stone and Craig Partridge. 2000. When the CRC and TCP
checksum disagree. In Proceedings of the conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM '00). ACM, New York, NY, USA, 309-319.
DOI=10.1145/347059.347561 http://doi.acm.org/10.1145/347059.347561

[2] TCP_MD5SIG: An Undocumented Socket Option in Linux.
http://criticalindirection.com/2015/05/12/tcp_md5sig/

[3] Iperf3 with TCP_MD5SIG (Patch being submitted):
https://github.com/tejaswanjari/iperf

[4] Linux Kernel Source-tree www.kernel.org

http://doi.acm.org/10.1145/347059.347561
http://criticalindirection.com/2015/05/12/tcp_md5sig/
https://github.com/tejaswanjari/iperf
https://github.com/tejaswanjari/iperf
http://www.kernel.org

2015 Storage Developer Conference. © EMC Corporation. All Rights Reserved.

Thank-you!

 Questions?

	Integrity of In-memory Data Mirroring in Distributed Systems
	Problem Definition
	Sources of Corruption during Mirroring
	TCP Checksum Vulnerability
	Strong checksum in Application?
	Ideal Solution
	Why reinvent the wheel?
	Working of TCP_MD5SIG socketopt
	TCP_MD5SIG over Socket
	Evaluation: Latency
	Evaluation: Throughput (Single-threaded)
	Evaluation: Throughput - TCP_MD5SIG (Multi-threaded)
	Evaluation: Memory Footprint�(accessing /dev/crypto from userspace)
	Use-Case: NVM Mirroring
	Conclusion
	References
	Thank-you!

