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Problem Definition 

 In-memory data is changing  
 Disk checksums are for the older state 
 Mirroring cannot rely on disk checksums 
 Undetected corruptions are not acceptable 
 Reliability is prime (e.g. Backup/Recovery Systems) 
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Sources of Corruption during Mirroring 

 System failure 
“Clean” shutdown and reboot 

 Hardware failure 
Redundant failover 

 Disks failure 
Disk/filesystem checksums 

 Process corruption 
 Avoiding copying without checksums 

 Network corruption 
Application/protocol checksums 
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TCP Checksum Vulnerability 

 TCP Checksum: 4 bytes & weak 
 Prone to False Positives (FPs) 
Wrong data, correct checksum 

 Failure probability: 1 in 16 million to 10 billion 
packets for 1526 bytes [Reference: [1] Stone et. al., When 
the CRC and TCP checksum disagree] 

 Implies 1 undetected TCP corruption in 20GB to 
1.2TB data, approximately 
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Strong checksum in Application? 

 Performance overhead 
Application data-structures different from network 

data-structures (e.g. B-tree data to fit into MTU) 
“Interconnect or network” is the vulnerability, not 

the application 
 End up reinventing transport protocol in 

application (over TCP!) 
Handling retransmissions, in-order delivery, gaps, 

etc. 
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Ideal Solution 

 Zero-copying: avoid multiple copies without 
checksums 

 H/w redundancy for hardware failures 
 Clean shutdowns on system failures 
 Filesystem/block/disk checksums for disk 

reliability 
 Bridging the integrity gap in 

network/interconnect 
Protection in transport protocol 
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Why reinvent the wheel? 

 RFC 2385: TCP MD5 Signature Option 
 Implemented in Linux Kernel as TCP_MD5SIG 

socket option 
 Linux implementation: 
Efficient compute (uses kernel crypto-engine) 

 Retransmission on checksum mismatch 
 Implies seamless error-recovery 

 Reduces syscalls by calling /dev/crypto from 
within kernel. Thus, lesser 
copy_to_user/copy_from_user and smaller memory 
footprint. 
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Working of TCP_MD5SIG socketopt 

 Both client and server must know each others’: 
IP 
Port 
MD5 Key 

before the connection is setup 
 Client must bind() for the server to save the 

<IP,Port,MD5Key> mapping 
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TCP_MD5SIG over Socket 
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Evaluation: Latency 
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Evaluation: Throughput (Single-threaded) 
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Evaluation: Throughput - TCP_MD5SIG 
(Multi-threaded) 
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Evaluation: Memory Footprint 
(accessing /dev/crypto from userspace) 
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Use-Case: NVM Mirroring 
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Conclusion 

 Not a generic solution 
First try other fits: 

 TCP checksum not good enough for the application? 
 Disk/filesystem checksum 
 Disk/flash mirroring 

 But very effective for typical usecases 
For line-speed mirroring of in-memory data: 

 Better throughput, memory footprint and same latency 

Error detection and recovery seamless to 
application 

 Future prospects: Persistent Memory 
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Thank-you! 

 Questions? 
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