
Petabyte-scale Distributed File
Systems in OSS: KFS evolution

Sriram Rao

Partner Scientist Manager, CISL@Microsoft

September 20, 2015

Talk Overview

• CISL and what we do

• KFS (Kosmos Filesystem)

CISL: Cloud and Information Services Lab

• Started in May 2012

•What is CISL?
• CISL is an applied research group with two sub-teams

• CISL Systems: Sriram and team

• CISL Data Science

•What does CISL Systems do?
• Build prototypes, publish papers, write production code and contribute to OSS

• Team members have Hadoop committer privileges

• CISL systems works closely with Microsoft Big Data teams

BigData Analytics Stack
Application Engines

M/R AMStorm AM REEF

Per-job resource management
Spark

Storm Hive ... AzureML AzureStreaming

Tez

Spark

Storage

YARN

Cosmos Store Cabo / WAS

HDFS API

Spark
Runtime

H
el

io
s

Service
Analytics

Cluster-wide resource management

Federation

Rayon: Predictable resource allocation

YARN + Mercury YARN + Mercury YARN + Mercury

HDFS API

Scale-out Store

Building KFS, Releasing it as OSS,
and Evolving it for massive scale

Talk Outline

• KFS Overview

• KFS as OSS project

• Filesystem support for Sorting data: atomic append

• Lessons from deploying KFS in production settings

• Summary

KFS Origins

• Kosmix (now, part of @Walmart labs) needed backend infrastructure for
search engine
• Kosmix was a search engine startup focused on “vertical search”

• “Distributed Filesystem” for storing web-map was a set of Perl scripts
• Login to machine; copy partitions that were needed

• Choices in 2006: Nothing we could take and use…
• Google filesystem: Proprietary; but paper is published

• HDFS: Yahoo was starting to build
• Hadoop…what is that???

• Cosmos: Didn’t know about it…

• So…at Kosmix, we chose to build our own based on ideas from GFS paper

Web-scale workloads
• Workloads characteristics:

• Few millions of large MB/GB size files

• Files are accessed (mostly) sequentially
• Random I/O is rare

• Files are written once; read many, many times
• Streaming algorithms that do few passes over massive data sets

• Dataset (typically) will not fit in RAM
• Need function shipping and data shipping

• Need massive storage and compute capability at low cost =>
Build using commodity hardware
• At scale, 1K cluster with 20TB/node => 2PB of space

Key ideas from GFS Paper

• Construct a global namespace by decoupling storage from filesystem
namespace
• Build a scale-out filesystem by aggregating the storage from individual nodes

in the cluster
• To improve performance, stripe a file across multiple nodes in the cluster

• Blocks of a file are “chunks”
• Chunks are fixed in size (typically, 64MB)

• Use replication for tolerating failures
• Chunks are replicated across nodes
• Can recover from bit errors, drive failures, node failures

• Filesystem runs as a user-land application

KFS Architecture

KFS Client library

Application

Metaserver

/

home user…

File Id Blocks

10 A, b, c

11 D, e, f

12 g

Block Id Locations

A C1, C2, C3

D C1, C4, C5

…

DA

Chunkserver

Chunkservers Chunkservers

Stores chunk files on disk

Key data structures in RAM

KFS and Other FS’es
• KFS metaserver ≡ HDFS Namenode

• KFS chunkserver ≡ HDFS Datanode

• KFS client library ≡ HDFS Filesystem client

Feature GFS HDFS KFS Cosmos

Multi-writer atomic append Yes No • Multiple writers per file
• Multiple blocks can be

concurrently appended to
(for Sorting)

Multiple writers per stream
(for ingest)

Erasure coding ? No • Yes: Replicate data using
erasure codes

No

Redundant meta data servers Yes Yes No Yes

Snapshots ? Yes No No

KFS Timeline…

• Started at Kosmix in March 2006

• Initial implementation done by November 2006
• Supported 3x replication, leases, scalable metaserver, …

• Tested on a 8-node cluster …Woo hoo…Ready for “big data”

• KFS work “paused” in February 2007

• Revived and released as OSS in September 2007
• Added a “HDFS shim” over KFS to enable Hadoop M/R jobs to run with KFS

• To play nice with Hadoop ecosystem, released with Apache license

• And then…learn the OSS rhythm…

KFS as OSS project (in 2007…)

• I tried evangelizing KFS…

• Presented KFS to folks at Powerset, Facebook, …

• Hadoop and HDFS were becoming the rage
• Hadoop was at version 0.15.3 by the time KFS was OSS’ed

• Yahoo was a big supporter of Hadoop

• Hard lesson: Building a community in OSS without a corporate
sponsor can be hard

KFS@Quantcast

• In June 2008 they built a ~1000 node cluster with “flat” connectivity
• Planned to run KFS and HDFS
• Machine config: 4 cores, 8GB RAM, 4x1 TB drives, 1Gbps NIC

• KFS deployed, initially, on a 120-node cluster for storing logs (~100TB)

• Over the next few months…
• Fixed the first set of KFS performance issues
• Deployed KFS on the full cluster to be used as a “backup” system: archive data

from HDFS to KFS

• Built trust in KFS…

• But, how to get KFS to “first class” citizenry status?

Building Trust in KFS…

• Focus on the one application that the cluster was used for…

• Hadoop Map-Reduce!

• Heart of Map-Reduce is essentially a distributed merge sort
• Map output is partitioned by key

• Reducer input is ordered by key

• What if we built a sort engine?

𝑅
0

𝑅
1

A

C

D

F

A

B

D

G

A

A

B

C

D

D

F

G

𝑀1

𝑀0

Building Trust in KFS: Sorting

• Map-Reduce jobs at Quantcast involved “large” (1-10TB) sorts
• Few hundred jobs per day

• Typical sort volume per day (in 2008): ~100TB

• They had replaced Hadoop’s shuffle with something proprietary
• Mostly worked…couldn’t scale beyond ~30TB in a single job

• Our plan…build a highly performant/scalable sort engine using KFS
• Data is written to disk and read back straightaway as job progresses…

• Mindset: We will discover problems. Iterate…Iterate…(working->working)

• Net: If KFS-sort can handle large sorts, can make it the primary FS

Extending KFS to handle
scalable merge-sort (Sailfish)

(Joint work with Raghu Ramakrishnan, Mike Ovsiannikov, and
Damian Reeves)

External Merge Sort: 1-Process

• Load
• Sort
• Spill

A, B

A, D

B, C

C, D

B

A

• Load
• Merge
• Spill

A

Bd

Bg

Cc

Ch

D

B, A

D, A

Ba

Cb

D, B

A

External Merge Sort @ Scale: Divide to Conquer

M

M

M

R

R

R

R

R

As the volume of data scales…

• Scale # of M’s and R’s

– Sort: Want data to be read once; spilled to disk once

– Merge: Want to do 1-pass merge of each partition

• But…

– Since input is unsorted…any M can generate data for any R

– This means…each R has to pull data from each M

• Distributed merge sort is known to be seek intensive

– # of seeks α M * R => I/O’s become small and random

Sorting @ Scale: I/O’s become small…tuning is
hard…

Scaling External Merge-Sort: Divide and Conquer

• Solving a seek problem: do “batch commit”

• What if we did network-wide “batch commit”?

M

M

M

R

R

R

R

R

Scalable Merge-Sort Using KFS: I-files

A B A,B

• I-files (like any other KFS file) are striped across nodes
• I-files store sorted runs which must be subsequently merged

I-file Design

• I-file use case: store data that is
input to a sort
– Sort operates on records

• Sort defines the order in which
records are consumed
– Order in which records are written

doesn’t matter

• Requirements:
– I-files need a record oriented

interface

– Records will be appended to I-file

M0

M1

M2

A

C

B

A

B

C

(Scale Out) Atomic Record Append

Challenge

• Large sorts involve 1000’s of
tasks, 1024 I-files

• Example: 1TB sort
– # of mappers: 1024

• Each mapper generates 1GB of data

– # of reducers: 1024
• Each reducer consumes 1GB of data

that was generated by 1024 appenders

Approach

• Scale out!
– Divide to conquer

• Extend I-file API to allow multiple
chunks to be concurrently
appended to

• Example: I-file with 1024
appenders…
– 64 mappers append to a chunk

– 16 chunks appended to in parallel

Using I-files for Sorting

• Sort chunks when
they are stable

– Overlap computation
with sorting

• Create long sort runs
by “batching”

– Sort multiple stable
chunks at a time

M1024

M0

M64

M512

…

…

…

Unsorted I-file File With Sorted Runs

Summary: KFS I-files Characteristics

• I-files provide a record-oriented interface

• Append-only

– Clients append records to an I-file : record_append(fd, <key, value>)

• Append on a file translates to append on a chunk

• At least once semantics => Filtering duplicates is application responsibility

• Records do not span chunk boundaries

– Metaserver controls the number of appenders to a chunk

– Chunkserver does “group commit”

Other Details…

• Chunks of a I-file are replicated 2x
– Each chunk has a “chunk master” that orders appends and replica follows

the same

– Loss of both chunks => job fails

• Sorted chunks of I-files were initially replicated 2x
– (Since 2012)…replaced with 1.33x Reed-Solomon coding

• Length of sorted run: More the merrier
– RAM for sorting is a key constraint

• 64GB RAM in a box; 12 tasks each with 4G; 6 sorters with 1G apiece

– Started with 3 chunks; translated to 200MB buffer; compression…

Taking KFS-sort to production

• 4 months of implementation work

• Deploy on 16 machines…run 1TB sort
– A weekend…“lock myself in room and debug”…Sort successful: 30 mins

– CPU/NIC pegged

• Show me a 10TB sort. We will give you 128 machines…
– Two weeks later…done: ~40 mins

• Show me a 100TB sort (actually, did a 140TB sort due to misconfig)
– Six weeks later…done. 6:20

• Let us go to production…

How Did We Do…

0

100

200

300

400

500

600

700

800

900

LogCount LogProc LogRead Nday-Model BehaviorModel ClickAttr SegmentExploder

R
u

n
ti

m
e

(m
in

.)

Job

KFS-Sort Hadoop

KFS-Sort in Production

• Deployed on the multi-tenanted cluster with 2 person devops
– Self-validation:

• map output records == reduce input records; Can’t lose records

• Records stored in compressed binary format; Can’t corrupt records

• Went from working…to…working
– For “flighting” without downtime, switch back to older sort via

configuration changes

• Very supportive management, (even) more supportive users
– Jobs fail; automagically switch to (slower) old one if needed

– Cluster “detonated” a few times

KFS-Sort in Production

• 8 months of debugging in production…sort volume went from
100TB/day to 600TB/day

– Purely software improvements on the same hardware

• Individual jobs sorting 100TB became typical

• Few other improvements to KFS-sort:

– Distributed erasure coding

– Outer-track optimization

• Write sort spills to disk’s outer track

And finally…

• In 2012, Quantcast…
• (Re) Released their extensions to KFS as QFS

• QFS replaced HDFS as their default filesystem

• Sailfish paper published at SoCC’12
• Sailfish released as open source project

• http://code.google.com/p/sailfish

• QFS paper published at VLDB’13
• Paper describes distributed erasure coding implementation and

results/experience

https://915bbc94-a-62cb3a1a-s-sites.googlegroups.com/site/acm2012socc/s4-rao.pdf?attachauth=ANoY7cqQgM2udzg46wyWflwpcHBm9Ku8LNlYeXdSvmNO287-YxUfWCyJvL9T-sEicE8ieCmKBCSEIETq_RgeP_cF19vXTHiXqcn8hauXVSs4Zl0nSBG0IcovaltG1r-QS78Qndj0Nb7iY8S9bPrWM8xJ44vq6u0GhxU4WFZ5laiKbduO4qHmYun9RCwhGbBdPo9hS-qTiGaoVmHOaJCp3OEP90t-fBAzLA%3D%3D&attredirects=0
http://code.google.com/p/sailfish
http://www.vldb.org/pvldb/vol6/p1092-ovsiannikov.pdf

Metaserver Performance: QFS vs HDFS

QFS Metaserver Stability (From QFS Paper)

What is QFS upto…

Not bad…

Concluding Remarks

• Software developed in the Big data space is mostly OSS
• Embrace/extend-and-contribute is key

• Building software in OSS is fun
• Once you have a community, you get “free” maintenance

• Key lessons from building software to run a service…
• Setup a flighting environment

• Iterate quickly…

