A Cost Effective, High Performance, Highly Scalable, Non-RDMA NVMe Fabric

Bob Hansen, VP System Architecture
bob@apeirondata.com
Agenda

• 3rd Platform Opportunity for High Performance Storage
• Applications with enhanced user experience require:
 • High IOP performance & low-latency
 – Storage performance = $$ PROFITS
 • Scalability
 • Scale out, in-memory compute/storage architecture evolution
 – In-memory => in-box flash => external flash
• The ideal solution
• Use cases
• Apeiron’s Shared DAS™ Architecture
 • Software with HW acceleration
 • Apeiron Data Fabric™
 • System architecture
3rd Platform Opportunity

According to IDC, 3rd Platform technologies already drive 30% of ICT spending and 100% of growth and 2nd Platform will enter recession in 2015.

Enhanced User Experience Applications driving high IOP/low latency storage performance

- Customer personalization and simplified data management
- Fortune 500 companies mid-layer meta cache rapidly growing
- Kayak
 - Caching aged airline quotes to speed service
- Netflix
 - Personalization for >50M customers
- Amadeus
 - 3.7 Million Bookings per Day
Ad Tech Example

- Deliver ad
- Log results
- Match user to ad
- Bid for ad
- Log transaction
- Match request to user
- Fast Lookup (<1ms)
 - Read consumer profile
 - Update profile
- Win
- Lose
- Determine best ROI

Deliver Ad within ms

- >1 billion consumers
- >3 billion devices

Storage IOPs / latency = $$
NoSQL solution
– Scale out nodes with dataset in-memory

Scale-out in-memory goodness
- Shared nothing compute nodes scale well
- Database is “sharded” evenly across all nodes
- Data set in-memory is VERY FAST
- To scale – just add another node, shard the DB again and go

Issues
- DRAM can be VERY expensive
- Node failure = very long recovery time
 - Data at risk during recovery
- As data set grows more servers must be added
 - = higher cost and footprint
- CPU to mem ratio can not be optimized

This breaks down as you approach 100TB
Expensive DRAM? Add Internal Flash

Scale-out in-memory goodness
- Share nothing compute nodes scale well
- Database is “sharded” evenly across all nodes
- Data set in-memory is VERY FAST
- *Data in flash is FAST*
- To scale – just add another node, shard the DB again and go

Issues
- Flash size must be equal on all nodes
 - Adding storage = downtime
- Node failure = very long recovery time
 - Data at risk during recovery
- As data set grows more nodes must be added
 - = higher cost and foot print
- CPU to mem ratio can not be optimized

Storage Management is a Pain!
Very High Performance External Storage is the answer

Application Servers

Shared DAS Goodness
- CPU and Storage scale independently
 - Minimize cost / rack space
 - Improved CPU utilization
- Fine Grain, On-line provisioning
- Server failures don’t take out data
 - Minimize failure recovery time

Issues
- Performance
 - IOPs and Predictable Latency
- Availability
 - HA design and Replicas
- Scale
 - PBs and 100s of nodes
The Ideal Solution -
Shared Direct Attached Storage

- Best performing persistent storage media
 - *Standard NVMe SSDs* – also best cost
- Bare metal Ethernet storage network HW
 - Low cost, *industry standard networking*
- Add value where you get the best ROI
 - *HW Accelerated, Networked Data path*
 - *NVMe SSD Virtualization*
 - *High availability with no performance penalty*
- Best in class management
 - *On-line provisioning and failure recovery*
 - *Storage performance statistics / predictive modeling*

Keep it simple!

Deliver raw NVMe performance to the application
Application Use Cases

Scale-out
Pooled Flash For Operational Big Data

High Bandwidth
Data storage for applications with high bandwidth

Fast cache
Tiered storage acceleration

Scale-Up
Compute Complex

Customer Personalization
Ad Tech RTB
Fraud detection
Customer personalization

NoSQL Cluster
Structured data store

Structured data store

In-memory check points requiring massive bandwidth

Accelerates response to time critical data
Seamless scaling

SAN

Apeiron’s Solution - **Shared DAS™**

> Scale-out NVM storage architecture
> Intelligent software with hardware accelerated data path
> Ethernet storage fabric with <3uS round-trip latency overhead
> Seamless scaling to petabytes
Apeiron’s Software with Hardware acceleration

- **Instant Failover**
 - Reduces node rebuild time from **>10hrs to <1sec**
 - Remaps metadata to spare

- **Automatic Replication**
 - Transparent backup
 - Hardware assisted SW configured
 - Increases OP/s 40%

- **Transparent Server to Server**
 - Reduces network congestion
 - Accelerates DB manageability
 - Increases application throughput

Pooled external storage at near DRAM Performance

✓ Faster response generates more profits
Why not “PCIe on a rope”?

A PCIe storage network is possible but faces several challenges:

- PCIe is not a network
 - PCIe is an evolution and extension to a parallel system bus
 - Initially scoped to support a handful of devices
- PCIe was not designed to be resilient
 - Bus errors = panic
- Failure isolation is a work in progress
- There are currently no PCIe networking standards

Why re-invent PCIe as a high cost, very complex external storage fabric?
RDMA / Apeiron Data Fabric™ Comparison

Apeiron Data Fabric™

- Simple, Robust
- Optimized for Ethernet and NVMe
- *light weight* Layer 2

The standard is not tied to any particular physical layer
RDMA approach adds between 26B and 96B of headers, in addition to NVMe Encapsulation

Flexible but adds complexity, link consumption and latency!
Apeiron System Architecture

Shared DAS™

Application Servers

- **Deliver raw NVMe performance to the application**

- **HW Accelerated Storage Processing Offload On Application Servers**

- **40Gb Bare Metal Ethernet Storage Network**

- **Apeiron Data Fabric™**

- **Very High Performance Network to SSD interface**

- Simple, scalable architecture with better than in-box flash performance
- Highly available, shared storage using standard SSDs and networking components
- Virtualized storage, on-line provisioning, failure isolation
Apeiron Technology Delivers

> NVMe Virtualization
> Performance Density
 • 18M IOPs, 72GB/s BW
 • In a 2U form factor
> < 90 μS 4K read latency P99 (NAND flash)
 • Ready for 3D Xpoint (<3 μS Fabric Latency)
“All the simplicity and promise of DAS with the efficiency and capability of network attached storage.”