Benefits of NVMe Over Fabrics and Demonstration of a Prototype

Rob Davis
Mellanox Technologies
robd@mellanox.com
NAB Demo of NVMe over Fabric

10GB/s reads
8GB/s writes
2.5M random read IOPS
(4KB block size)
Max latency 6-8us over local

From PR

The Mangstor NMX Series appliances address the need of video editing and shared game development applications requiring high R/W bandwidth while maintaining low latency to shared flash storage in cluster server configurations. The solution uses Mellanox VPI adapters, supporting NVMe over Fabrics using either RoCE or IB to provide high throughput at low latency.

Mangstor’s storage appliance provides a non-proprietary solution which outperforms traditional SAN-attached all-flash and hybrid arrays, and enables customers to seamlessly evolve their traditional server attached storage to growing server-SAN storage environments.
Storage Market Evolution to Non-Volatile Memory (NVM)

Storage Media Technology

Access Time in Micro Seconds

- HD
- SSD
- NVM

10,000x improvement
Flash Performance Creates Bottleneck at Network Layer

Storage Media Technology

<table>
<thead>
<tr>
<th>Storage Media Technology</th>
<th>HD</th>
<th>SSD</th>
<th>NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Time (micro-sec)</td>
<td>1000</td>
<td>100</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Networked Storage

<table>
<thead>
<tr>
<th>Storage Media</th>
<th>Networked Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>Protocol (SW)</td>
</tr>
<tr>
<td>Network</td>
<td></td>
</tr>
</tbody>
</table>

Protocol and Network

Access Time (micro-sec)

<table>
<thead>
<tr>
<th>Protocol and Network</th>
<th>HDD</th>
<th>SSD</th>
<th>NVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Time (micro-sec)</td>
<td>100</td>
<td>10</td>
<td>0.01</td>
</tr>
</tbody>
</table>

The Network and the Protocol MUST get faster
Faster Networking is Here Today:

Ethernet, Fibre Channel & InfiniBand

End-to-End 25, 32, 40, 50, 56, 100Gb
Faster Protocol is Here Too:

- NVMe: Optimized for flash and next-gen NV-memory
 - Traditional SCSI interfaces designed for spinning disk
 - NVMe bypasses unneeded layers
- NVMe Flash Outperforms SAS/SATA Flash
 - 2x-2.5x more bandwidth, 40-50% lower latency, Up to 3x more IOPS

![Chart showing Random Read/Write Performance comparison between 750 Series (PCIe) and 730 Series (SATA)]
Native PCIe Interface Eliminates Latency

- Traditional SAS/sATA architecture
- NVMe reduces latency, power, and real-estate
“NVMe Over Fabrics” is the Logical and Historical Next Step

- Sharing NVMe based storage across multiple Servers
- Driven by the need for the best possible compute efficiency and shared advantages
 - Utilization of capacity, rack space, power, cost
 - Ease of scalability, management, fault isolation
- Shared storage requires a Network/Fabric
- NVMe over Fabrics standard in development
 - Version 1.0 in 4Q15
NVMf Architecture

- The idea is to extend the efficiency of local NVMe interface over the fabric
 - NVMe commands and data structures are transferred end to end
- Relies on RDMA for performance
 - RoCE, iWARP, IB
 - iSER uses SCSI for transport
- A few pre-standard versions are available today
One-to-one mapping between NVMe queues and RDMA queues

RDMA-Send used to push encapsulated NVMe SQE and CQE

NVMe SQs are target resident, NVMe CQs are initiator resident

NVMe data exchange is done by RDMA operations

- NVMe write data can be transferred within the command as immediate data
 - Limited to write < 8KB
Remote Read Operation Algorithm

- **Initiator**
 - Post SQE send to NIC

- **Target**
 - Upon RDMA Send Completion (2)
 - Allocate Memory for Data
 - Post SQE to SQ
 - Post DB to SSD
 - Wait for SSD completion (3)
 - Send data with RDMA
 - Send NVMe CQE
 - Free memory
Remote Write Operation Algorithm

- **Initiator**
 - Post SQE send to NIC

- **Target**
 - Upon RDMA Send Completion (2)
 - Allocate Memory for Data
 - Post SQE to SQ
 - If (immediate data)
 - Write data to memory
 - Else
 - Post RDMA to fetch data
 - Wait for RDMA completion (3)
 - Post DB to SSD
 - Wait for SSD completion (4)
 - Send NVMe CQE
 - Free memory
Memblaze FMS Demonstration

PBlaze SSD NBDx performance

IOPS(K) vs. THROUGHPUT(GB/s)

IOPS(K) graph:
- X-axis: 1, 2
- Y-axis: 0 to 1200

THROUGHPUT(GB/s) graph:
- X-axis: 1, 2
- Y-axis: 0 to 7

Legend:
- IOPS(K)
- THROUGHPUT(GB/s)
PMC Demonstration at FMS

- Development platform to enable testing of NVMe with RDMA
 - Mellanox RDMA NIC
 - PMCS high performance NVMe device
- IO performance for remote NVMe transactions similar to local device
 - No impact to IO throughput
 - Fully utilizing RDMA bandwidth with 4K IO
 - Latency impact is currently <6us on 4KB random Read/Write
Micron Technology Demonstration

Target Server

- Mellanox NIC
- Micron Flash
- PCIe

Initiator Server

- Mellanox NIC

100GbE

<table>
<thead>
<tr>
<th>Target Type</th>
<th>Local 4KB read IOPS</th>
<th>Local 4KB write IOPS</th>
<th>Remote read IOPS</th>
<th>Remote write IOPS</th>
<th>Remote write added latency</th>
<th>Remote read added latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micron 1 NVMe</td>
<td>849K</td>
<td>330K</td>
<td>845K</td>
<td>330K</td>
<td>1.9us</td>
<td>4.76us</td>
</tr>
<tr>
<td>Micron 4 NVMe</td>
<td>3406K</td>
<td>1333K</td>
<td>3388K</td>
<td>1332K</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Conclusions

- New Non-Volatile storage technology is moving the performance bottle neck for SANs from the storage devices to the IO
- The IO industry is responding with new products to address this
- RDMA technology is essential to these new products
 - RoCE is the only Ethernet RDMA protocol shipping today that makes sense for NVMe over Fabrics
 - iWARP adds back the TCP/IP layers, negating the performance gains from removing SCSI
- Some IO vendors are already sampling Pre-standard products
 - Public demos of NVMe over Fabrics (NVMe) are happening
 - Expect to see products next year
Questions?

Rob Davis
robd@mellanox.com