

Introduction to Highly Available NFS Server on scale-out storage systems based on GlusterFS

Soumya Koduri Red Hat

Meghana Madhusudhan Red Hat

AGENDA

- What is GlusterFS?
- Integration with NFS-Ganesha
- Clustered NFS
- Step-by-step guide
- Future Directions
- Q&A

GlusterFS

GlusterFS

- > An open source, scale-out distributed file system
- > Software Only and operates in user-space
- > Aggregates Storage into a single unified namespace
- No metadata server architecture
- > Provides a modular, stackable design
- > Runs on commodity hardware

Architecture

- > Data is stored on disk using native formats (e.g. ext4, XFS)
- > Has client and server components
 - Servers, known as storage bricks (glusterfsd daemon), export local filesystem as volume
 - Clients (glusterfs process), creates composite virtual volumes from multiple remote servers using stackable translators
 - Management service (glusterd daemon) manages volumes and cluster membership

GlusterFS Deployment

Access Mechanisms

- FUSE based Native protocol
- > NFSv3
- libgfapi
- > ReST/HTTP
- > HDFS

libgfapi

- A user-space library with APIs for accessing Gluster volumes.
- > Reduces context switches.
- Many applications integrated with libgfapi (qemu, samba, NFS Ganesha).
- > Both sync and async interfaces available.
- > C and python bindings.
- Available via 'glusterfs-api*' packages.

NFS-Ganesha

NFS access

Why NFS:

- Widely used network protocol
- ◆Many enterprises still heavily depend on NFS to access their data from different operating systems and applications.

Native NFS (referred as Gluster-NFS):

- Acts as GlusterFS client residing on the same node as the GlusterFS server.
- Supports only NFSv3 protocol
- *Not strictly protocol-complaint

NFS-Ganesha

- > A user-space, protocol-complaint NFS file server
- > Supports NFS v3, 4.0, 4.1, pNFS and 9P from the Plan9 operating system.
- Provides a FUSE-compatible File System Abstraction Layer(FSAL)
 to plug in to any own storage mechanism
- > Can provide simultaneous access to multiple file systems.

Active participants:

> CEA, Panasas, Red Hat, IBM, LinuxBox

Benefits of NFS-Ganesha

- > Dynamically export/unexport entries using D-Bus mechanism.
- > Can manage huge meta-data and data caches
- Can act as proxy server for NFSv4
- Provides better security and authentication mechanism for enterprise use
- Portable to any Unix-like file-systems
- Easy access to the services operating in the user-space (like Kerberos, NIS, LDAP)

Modular Architecture

- > **RPC Layer**: implements ONC/RPCv2 and RPCSEC_GSS (based on libntirpc)
- > **FSAL**: File System Abstraction Layer, provides an API to generically address the exported namespace
- Cache Inode: manages the metadata cache for FSAL. It is designed to scale to millions of entries
- FSAL UP: provides the daemon with a way to be notified by the FSAL that changes have been made to the underlying FS outside Ganesha. These information is used to invalidate or update the Cache Inode.

NFS-Ganesha Architecture

NFS-Ganesha + GlusterFS

Integration with GlusterFS

- > Integrated with GlusterFS using 'libgfapi' library That means,
 - * Additional protocol support w.r.t. NFSv4, pNFS
 - Better security and authentication mechanisms for enterprise use.
 - Performance improvement with additional caching

Clustered NFS

Clustered NFS

- Stand-alone systems:
 - are always bottleneck.
 - cannot scale along with the back-end storage system.
 - not suitable for mission-critical services
- > Clustering:
 - High availability
 - Load balancing
 - Different configurations:
 - Active-Active
 - Active-Passive

Challenges Involved

- > Cluster wide change notifications for cache invalidations
- > Coordinate Grace period across nodes in the cluster
- Maintain and recover lock, share reservation and delegations state
- > Provide "high availability" to stateful parts of NFS
 - * Share state across the cluster to allow failover
 - IP Failover in case of node failure
 - Lock recovery in case of node failure

Active-Active HA solution on GlusterFS

Primary Components

- Pacemaker
- Corosync
- PCS
- Resource agents
- HA setup scipt ('ganesha-ha.sh')
- Shared Storage Volume
- UPCALL infrastructure

Clustering Infrastructure

- Using Open-source services
- Pacemaker: Cluster resource manager that can start and stop resources
- Corosync: Messaging component which is responsible for communication and membership among the machines
- > **PCS**: Cluster manager to easily manage the cluster settings on all nodes

Cluster Infrastructure

- > **Resource-agents**: Scripts that know how to control various services.
- New resource-agent scripts added to
 - •ganesha_mon: Monitor NFS service on each node & failover the Virtual IP
 - •ganesha_grace: Puts entire cluster to Grace
- If NFS service down on any of the nodes
 - Entire cluster is put into grace via D-bus signal
 - Virtual IP fails over to a different node (within the cluster).

HA setup script

- *Located at /usr/libexec/ganesha/ganesha-ha.sh.
- · Sets up, tears down and modifies the entire cluster.
- Creates resource-agents required to monitor NFS service and IP failover.
- Integrated with new Gluster CLI introduced to configure NFS-Ganesha.
- Primary Input: ganesha-ha.conf file with the information about the servers to be added to the cluster along with Virtual IPs assigned, usually located at /etc/ganesha.

Upcall infrastructure

- A generic and extensible framework.
 - used to maintain states in the glusterfsd process for each of the files accessed
 - sends notifications to the respective glusterfs clients in case of any change in that state.
- Cache-Invalidation: Needed by NFS-Ganesha to serve as Multi-Head Config options:

```
#gluster vol set <volname> features.cache-invalidation on/off
#gluster vol set <volname> features.cache-invalidation-timeout
<value>
```

Shared Storage Volume

- Provides storage to share the cluster state across the NFS servers in the cluster
- > This state is used during failover for Lock recovery
- Can be created and mounted on all the nodes using the following gluster CLI command -

```
#gluster volume set all cluster.enable-shared-storage enable
```


Step-by-step guide

Required Packages

Gluster RPMs (>= 3.7)

- •glusterfs-server
- •glusterfs-ganesha

Ganesha RPMs (>= 2.2)

- nfs-ganesha
- nfs-ganesha-gluster

Pacemaker & pcs RPMs

Pre-requisites

- *Ensure all machines are DNS resolvable
- Disable and stop NetworkManager service, enable and start network service on all machines
- *Enable IPv6 on all the cluster nodes.
- *Install pacemaker pcs ccs resource-agents corosync
 - #yum -y install pacemaker pcs ccs resource-agents corosync` on all machines
- *Enable and start pcsd on all machines
 - * #chkconfig --add pcsd; chkconfig pcsd on; service pcsd start
- *Populate /etc/ganesha/ganesha-ha.conf on all the nodes.

Pre-requisites

- *Create and mount the Gluster shared volume on all the machines
- *Set cluster auth password on all machines

```
#echo redhat | passwd --stdin hacluster
#pcs cluster auth on all the nodes
```

- *Passwordless ssh needs to be enabled on all the HA nodes.
 - On one (primary) node in the cluster, run: #ssh-keygen -f /var/lib/glusterd/nfs/secret.pem
 - Deploy the pubkey ~root/.ssh/authorized keys on _all_ nodes, run: #ssh-copy-id -i /var/lib/glusterd/nfs/secret.pem.pub root@\$node

Sample 'ganesha-ha.conf'

Name of the HA cluster created. must be unique within the subnet

HA_NAME="ganesha-ha-360"

The gluster server from which to mount the shared data volume.

HA_VOL_SERVER="server1"

The subset of nodes of the Gluster Trusted Pool that form the ganesha HA cluster.

Hostname is specified.

HA_CLUSTER_NODES="server1,server2,..."

#HA_CLUSTER_NODES="server1.lab.redhat.com,server2.lab.redhat.com,..."

Virtual IPs for each of the nodes specified above.

VIP_server1="10.0.2.1"

VIP_server2="10.0.2.2"

Setting up the Cluster

New CLIs introduced to configure and manage NFS-Ganesha cluster & Exports

#gluster nfs-ganesha <enable/disable>

- Disable Gluster-NFS
- Start/stop NFS-Ganesha services on the cluster nodes.
- Setup/teardown the NFS-Ganesha cluster.

#gluster vol set <volname> ganesha.enable on/off

- Creates export config file with default parameters
- Dynamically export/unexport volumes.

Modifying the Cluster

- *Using HA script ganesha-ha.sh located at /usr/libexec/ganesha.
- Execute the following commands on any of the nodes in the existing NFS-Ganesha cluster
- To add a node to the cluster:

```
#./ganesha-ha.sh --add <HA_CONF_DIR> <HOSTNAME> <NODE-VIP>
```

To delete a node from the cluster:

#./ganesha-ha.sh --delete <HA CONF DIR> <HOSTNAME>

Where, HA_CONF_DIR: The directory path containing the ganesha-ha.conf file.

HOSTNAME: Hostname of the new node to be added

NODE-VIP: Virtual IP of the new node to be added.

Modifying Export parameters

On any of the nodes in the existing ganesha cluster:

- Edit/add the required fields in the corresponding export file located at /etc/ganesha/exports.
- Execute the following command:
 - #./ganesha-ha.sh --refresh-config <HA_CONFDIR> <Volname>
 Where,
 - HA_CONFDIR: The directory path containing the ganesha-ha.conf file
 - Volname: The name of the volume whose export configuration has to be changed.

Next

pNFS (Parallel Network File System)

- > Introduced as part of NFSv4.1 standard protocol
- Needs a cluster consisting of M.D.S. (meta data server) and D.S.
 (Data server)
- > Any filesystem can provide pNFS access via NFS-Ganesha by means of the FSAL easy plugin architecure
- > Support for pNFS protocol ops added to FSAL_GLUSTER (in NFS-Ganesha V2.2)
- > Currently supports only FILE LAYOUT

Future Directions

- NFSv4 paves the way forward for interesting stuff
- Adding NFSv4.x feature support for GlusterFS
 - -Directory Delegations
 - -Sessions
 - -Server-side copy
 - -Application I/O Advise (like posix_fadvise)
 - -Sparse file support/Space reservation
 - -ADB support
 - -Security labels
 - -Flex File Layouts in pNFS

Contact

Mailing lists:

- •nfs-ganesha-devel@lists.sourceforge.net
- gluster-users@gluster.org
- •gluster-devel@nongnu.org

IRC:

- #ganesha on freenode
- #gluster and #gluster-dev on freenode
- •team: Apeksha, ansubram, jiffin, kkeithley, meghanam, ndevos, saurabh, skoduri

References & Links

Links (Home Page):

- https://github.com/nfs-ganesha/nfs-ganesha/wiki
- http://www.gluster.org

References:

```
http://gluster.readthedocs.org
```

http://blog.gluster.org/

http://www.nfsv4bat.org/Documents/ConnectAThon/2012/NFS-GANESHA_cthon_20

12.pdf

http://events.linuxfoundation.org/sites/events/files/slides/Collab14_nfsGanesha.pdf

http://www.snia.org/sites/default/files/Poornima_NFS_GaneshaForClusteredNAS.p

df

http://clusterlabs.org/doc/

Q&A

Thank you!

Soumya Koduri Meghana Madhusudhan

