

Online Cache Analysis And Its Applications For Enterprise Storage Systems

Irfan Ahmad

Founder & CTO CloudPhysics, Inc.

System Model – Caches are Critical

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

SD CE

Cache Performance Questions

Cache Performance Hit Ratio 35% Cache Size 128GB

□ Is this performance good? Can it be improved?

- What happens if I add / remove some cache?
- What if I add / remove workloads?
- □ Is there cache thrashing / pollution
- Can I use cache to control performance or QoS

Executive Summary

- Miss Ratio Curves (MRCs): game-changing storage tool
- CloudPhysics' MRC algorithm = up to 10,000x improvement
- Online MRCs now practical:
 - ~20 million IO/s per core; amortized 60 ns per IO
 - High accuracy in 1 MB
 - **Feasible for for memory-constrained firmware, drivers**
- Looking to partner with storage systems vendors
- Applications:
 - Workload-aware predictive cache sizing
 - Software-driven cache partitioning for "free" performance
 - Latency / Throughput guarantees via cache QoS

Problem & Opportunity

- Cache performance highly non-linear
- Benefit varies widely by workload
- Opportunity: dynamic cache management
 Efficient sizing, allocation, and scheduling
 - Improve performance, isolation, QoS
- Problem: online modeling expensive
 - Too resource-intensive to be broadly practical
 - Exacerbated by increasing cache sizes

Modeling Cache Performance

15

Miss Ratio Curve (MRC)

- Performance as f(size)
- Working set knees
- Inform allocation policy
- Reuse distance
 - Unique intervening blocks between use and reuse
 - LRU, stack algorithms

MRC Algorithm Research

15

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Key New Idea

- CloudPhysics MRC approximation algorithm
 - Randomized spatial sampling
 - Hashing to capture all reuses of same block
 - High performance in tiny constant footprint
 - Highly accurate MRCs
- Summary: run *full* algorithm, using *sampled* blocks
 - https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger

Licensable Systems Implementation

Easy to integrate with existing embedded systems
 High-performance SHARDS implementation in C

void mrc_process_ref(MRC *mrc, LBN block); void mrc_get_histo(MRC *mrc, Histo *histo);

No floating-point, no dynamic memory allocation

Extremely low resource usage

- Accurate MRCs in <1 MB footprint</p>
- Single-threaded throughput of 17-20M blocks/sec
- Average time of mrc_process_ref() call < 60 ns</p>
- Scaled-down simulation similarly efficient

MRCs from Customer Workloads (LRU)

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

SD

Non-LRU Miss Ratio Curve Examples

SD (E

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Applications of Online MRC

Where are the MRCs

SD[©]

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Overview of Applications

Without any changes to cache

Cache sizing

Cache parameter tuning

- With cache partitioning support
 - Optimize performance
 - Enforce service-level objectives
- Next-generation optimizations
 - Latency and throughput guarantee SLAs

Al for bending MRC curves

Application: Cache Sizing

Online recommendations

- Integrate SHARDS with storage controller
- Show MRCs in storage management UI
- Customers and SEs self-service on sizing
- Size array cache in the field, trigger upsell, etc.
- Tune and optimize customer workloads
- Report cache size to achieve desired latency
- Existing CloudPhysics caching analytics service

Example: MRC in UI Dashboard (mockup)

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

SD (15

Example: MRC UI Mockup

SD 🗉

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Application: Tune Cache Policy

Quantify impact of parameter changes

- Cache block size, use of sub-blocks
- Write-through vs. write-back
- Even replacement policy...
- Scaled-down simulation
 - Representative "microcosm" of cache behavior
 - Works for arbitrary policies and parameters
 - Explore without modifying actual production cache
- Dynamic online optimization

Application: Optimize Performance

Improve aggregate cache performance

- Prevent inefficient clients from wasting space
- Allocate space based on client benefit
- Mechanism: Partition cache across clients
 - Isolate and control LUNs, VMs, tenants, etc.
 - Optimize partition sizes using MRCs
- Adapt to changing workload behavior

Example Partitioning Results

15

Customer traces

- **27** workload mixes
- **3**, 32, 128 GB sizes
- SHARDS partitions vs. global LRU
- Results histogram
 - Effective cache size
 - 40% larger (avg)
 - 146% larger (max)

Effective Cache Size Increase (%)

Application: Latency, IOps Guarantees

Meet service-level objectives

- Per-client latency or throughput targets
- Use cache allocation as general QoS knob
- Same partitioning mechanism
 - Isolate and control LUNs, VMs, tenants, etc.
 - Use MRCs for sizing partitions to meet goals
- Adapt to changing workload behavior

Example: Achieving Latency Target

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

SD 📧

Next-Generation Capabilities

- Unified monitoring and optimization
- New invention can "bend" MRC curves
- **¬** Further performance improvements
 - Significant improvement, even for single workload!
 - Bigger wins for mixed and partitioned workloads
- Ongoing, in-progress R&D

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved

Next-Gen Curve-Bending Al

SD (E

Conclusion

- Miss Ratio Curves (MRCs): game-changing storage tool
- CloudPhysics' MRC algorithm = up to 10,000x improvement
- Online MRCs now practical:
 - ~20 million IO/s per core; amortized 60 ns per IO
 - High accuracy in 1 MB
 - **Feasible for for memory-constrained firmware, drivers**
- Looking to partner with storage systems vendors
- Applications:
 - Workload-aware predictive cache sizing & tuning
 - Software-driven cache partitioning for "free" performance
 - Latency / Throughput guarantees via cache QoS

Appendix

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Example SHARDS MRCs

□ Block I/O trace *t*04

- Production VM disk
- 69.5M refs, 5.2M unique
- □ Sample size *s_{max}*
 - □ Vary from 128 to 32K
 - □ $s_{max} \ge 2K$ very accurate
- Small constant footprint
- SHARDS_{adj} adjustment

Generalizing to Non-LRU Policies

15

Sophisticated algorithms

- □ ARC, LIRS, Clock-Pro, ...
- No single-pass methods!
- Scaled-down simulation
 - Hashed spatial sampling
 - Simulate each size separately
- Example ARC results
 - 100 different cache sizes
 - **0.01 MAE with R = 0.001**
 - 1000× memory reduction

Mattson Algorithm Example

$\begin{array}{c} x & x & \sqrt{2} & \sqrt{2} \\ \hline references & \dots & C & B & A & D & A & B & C \\ \hline distances & \dots & 4 & \infty & 3 & 7 & I & 2 & 3 \end{array}$

• Reuse distance

15

- Unique refs since last access
- Distance from top of LRU-ordered stack
- Hit if distance < cache size, else miss

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Spatially Hashed Sampling

0

15

adjustable threshold

Ρ

subset inclusion property maintained as R is lowered

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Basic SHARDS

15

Each sample statistically represents I/R blocks Scale up reuse distances by same factor

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

SHARDS in Constant Space

Experimental Evaluation

15

Data collection

- SaaS caching analytics
- Remotely stream VMware vscsiStats
- 124 trace files
 - 106 week-long traces CloudPhysics customers
 - 12 MSR and 6 FIU traces SNIA IOTTA

LRU, 16 KB block size

Dynamic Rate Adaptation

15

Adjust sampling rate

Start with R = 0.1

- Lower R as M increases
- Shape depends on trace
- Rescale histogram counts
 - Discount evicted samples
 - Correct relative weighting
 - Scale by R_{new} / R_{old}

34

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Error Analysis

15

Mean Absolute Error (MAE) | exact – approx | Average over all cache sizes □ Full set of 124 traces **□** Error $\propto 1 / \sqrt{s_{max}}$ **•** MAE for $s_{max} = 8K$ 0.0027 median 0.0171 worst-case

2015 Storage Developer Conference. © CloudPhysics, Inc. All Rights Reserved.

Memory Footprint

- Full set of 124 traces
- Sequential PARDA
- Basic SHARDS
 - Modified PARDA
 - Memory ≈ R × baseline for larger traces
- Fixed-size SHARDS
 - New space-efficient code
 - Constant 1 MB footprint

Processing Time

- Full set of 124 traces
- Sequential PARDA
- Basic SHARDS
 - Modified PARDA
 - R=0.001 speedup 41–1029×

Fixed-size SHARDS

- New space-efficient code
- Overhead for evictions
- □ S_{max}= 8K speedup 6–204×