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Cache Performance Questions 

r  Is this performance good? Can it be improved? 
r  What happens if I add / remove some cache? 
r  What if I add / remove workloads? 
r  Is there cache thrashing / pollution 
r  Can I use cache to control performance or QoS 
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Executive Summary 

r  Miss Ratio Curves (MRCs): game-changing storage tool 
r  CloudPhysics’ MRC algorithm = up to 10,000x improvement 
r  Online MRCs now practical: 

r  ~20 million IO/s per core; amortized 60 ns per IO 
r  High accuracy in 1 MB 
r  Feasible for for memory-constrained firmware, drivers 

r  Looking to partner with storage systems vendors 
r  Applications: 

r  Workload-aware predictive cache sizing 
r  Software-driven cache partitioning for “free” performance 
r  Latency / Throughput guarantees via cache QoS 
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Problem & Opportunity 

r  Cache performance highly non-linear 
r  Benefit varies widely by workload 
r  Opportunity: dynamic cache management 

r Efficient sizing, allocation, and scheduling 
r Improve performance, isolation, QoS 

r  Problem: online modeling expensive 
r Too resource-intensive to be broadly practical 
r Exacerbated by increasing cache sizes 
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Modeling Cache Performance 

���

���

���

���

���

�� �� ��� ��� ���

�
��
��
�
��
��

���������������

r  Miss Ratio Curve (MRC) 
r  Performance as f (size) 
r  Working set knees 
r  Inform allocation policy 

r  Reuse distance 
r  Unique intervening blocks 

between use and reuse 
r  LRU, stack algorithms 
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MRC Algorithm Research 

7 

1970	
   1975	
   1980	
   1985	
   1990	
   1995	
   2000	
   2005	
   2010	
   2015	
  1965	
  

separate simulation 
per cache size 

Bennett & Kruskal 
balanced tree 

O(N), O(N log N) 

Olken 
tree of unique refs  

O(M), O(N log M) 

SHARDS 
spatial hashing 

Counter Stacks 
probabilistic counters 

O(1), O(N) 

O(log M), O(N log M) 

PARDA 
parallelism 

UMON-DSS 
hw set sampling 

RapidMRC 
on-off periods 

Kessler, Hill & Wood 
set, time sampling 

Bryan & Conte 
cluster sampling 

Mattson Stack Algorithm 
single pass 

O(M), O(NM) 

Space, Time Complexity 
N = total refs, M = unique refs 
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Key New Idea 

r  CloudPhysics MRC approximation algorithm 
r Randomized spatial sampling 
r Hashing to capture all reuses of same block 
r High performance in tiny constant footprint 
r Highly accurate MRCs 

r  Summary: run full algorithm, using sampled 
blocks 
r  https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger 
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Licensable Systems Implementation 

r  Easy to integrate with existing embedded systems 
r High-performance SHARDS implementation in C 

 

void mrc_process_ref(MRC *mrc, LBN block);
void mrc_get_histo(MRC *mrc, Histo *histo); 

r No floating-point, no dynamic memory allocation  
r  Extremely low resource usage 

r Accurate MRCs in <1 MB footprint 
r Single-threaded throughput of 17-20M blocks/sec 
r Average time of mrc_process_ref() call < 60 ns 

r  Scaled-down simulation similarly efficient 
9 
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MRCs from Customer Workloads (LRU) 

msr_mds (1.10%) msr_proj (0.06%) msr_src1 (0.06%) t00          (0.38%) t01          (0.05%) t02          (0.28%) t03          (0.65%)

t04          (0.28%) t05          (1.00%) t06          (0.33%) t07          (0.98%) t08          (0.04%) t09          (0.21%) t10          (0.61%)

t11          (0.65%) t12          (0.43%) t13          (0.46%) t14          (0.38%) t15          (0.10%) t16          (1.20%) t17          (0.54%)

t18          (0.08%) t19          (0.06%) t20          (0.03%) t21          (0.09%) t22          (0.04%) t23          (0.07%) t24          (0.65%)

t25          (1.20%) t26          (0.33%) t27          (0.50%) t28          (0.57%) t29          (0.12%) t30          (0.06%) t31          (0.95%)
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Non-LRU Miss Ratio Curve Examples 

ARC — MSR-Web Trace 

��

����

����

����

����

��

�� ��� ��� ��� ��� ��� ��� ��� ���

�
��
��
�
��
��

���������������

���������������
���������������

���������

CLOCK-Pro — Trace t04 
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Applications of Online MRC 
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Where are the MRCs 
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Overview of Applications 

r  Without any changes to cache 
r Cache sizing 
r Cache parameter tuning 

r  With cache partitioning support 
r Optimize performance 
r Enforce service-level objectives 

r  Next-generation optimizations 
r Latency and throughput guarantee SLAs 
r AI for bending MRC curves 
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Application: Cache Sizing 

r  Online recommendations 
r  Integrate SHARDS with storage controller 
r Show MRCs in storage management UI 
r Customers and SEs self-service on sizing 
r Size array cache in the field, trigger upsell, etc. 
r Tune and optimize customer workloads 
r Report cache size to achieve desired latency 

r  Existing CloudPhysics caching analytics service 
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Example: MRC in UI Dashboard (mockup) 
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Example: MRC UI Mockup 
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Application: Tune Cache Policy 

r  Quantify impact of parameter changes 
r Cache block size, use of sub-blocks 
r Write-through vs. write-back 
r Even replacement policy… 

r  Scaled-down simulation 
r Representative “microcosm” of cache behavior 
r Works for arbitrary policies and parameters 
r Explore without modifying actual production cache 

r  Dynamic online optimization 

18 



2015 Storage  Developer Conference. © CloudPhysics, Inc.  All Rights Reserved. 
 

Application: Optimize Performance 

r  Improve aggregate cache performance 
r Prevent inefficient clients from wasting 

space 
r Allocate space based on client benefit 

r  Mechanism: Partition cache across clients 
r  Isolate and control LUNs, VMs, 

tenants, etc. 
r Optimize partition sizes using MRCs 

r  Adapt to changing workload behavior 
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Example Partitioning Results 

r  Customer traces 
r  27 workload mixes 
r  8, 32, 128 GB sizes 

r  SHARDS partitions vs. 
global LRU 

r  Results histogram 
r  Effective cache size  
r  40% larger (avg) 
r  146% larger (max) 
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Application: Latency, IOps Guarantees 

r  Meet service-level objectives 
r Per-client latency or throughput targets 
r Use cache allocation as general QoS knob 

r  Same partitioning mechanism 
r Isolate and control LUNs, VMs, tenants, etc. 
r Use MRCs for sizing partitions to meet goals 

r  Adapt to changing workload behavior 
 

21 
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Example: Achieving Latency Target 
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Next-Generation Capabilities 

r  Unified monitoring and optimization 
r  New invention can “bend” MRC curves 
r  Further performance improvements 

r Significant improvement, even for single 
workload! 

r Bigger wins for mixed and partitioned 
workloads 

r  Ongoing, in-progress R&D 
23 
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Next-Gen Curve-Bending AI 
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Conclusion 

r  Miss Ratio Curves (MRCs): game-changing storage tool 
r  CloudPhysics’ MRC algorithm = up to 10,000x improvement 
r  Online MRCs now practical: 

r  ~20 million IO/s per core; amortized 60 ns per IO 
r  High accuracy in 1 MB 
r  Feasible for for memory-constrained firmware, drivers 

r  Looking to partner with storage systems vendors 
r  Applications: 

r  Workload-aware predictive cache sizing & tuning 
r  Software-driven cache partitioning for “free” performance 
r  Latency / Throughput guarantees via cache QoS 
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Appendix 
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Example SHARDS MRCs 
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r  Block I/O trace t04 
r  Production VM disk 
r  69.5M refs, 5.2M unique 

r  Sample size smax 
r  Vary from 128 to 32K 
r  smax ≥ 2K very accurate 

r  Small constant footprint 
r  SHARDSadj adjustment 
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Generalizing to Non-LRU Policies 
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r  Sophisticated algorithms 
r  ARC, LIRS, Clock-Pro, … 
r  No single-pass methods! 

r  Scaled-down simulation 
r  Hashed spatial sampling 
r  Simulate each size 

separately 
r  Example ARC results 

r  100 different cache sizes 
r  0.01 MAE with R = 0.001 
r  1000× memory reduction  

28 
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Mattson Algorithm Example 
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 A  C  B references B   …
  

A DC
   distances ∞ 3 7 4 …

  

✗   ✓   

� Reuse distance 
� Unique refs since last access 
� Distance from top of LRU-ordered stack 

� Hit if distance < cache size, else miss 

1 

✓   

2 3 

✓   ✗   
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Spatially Hashed Sampling 
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sampling rate R = T / P 
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Basic SHARDS 
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Scale up reuse distances by same factor  
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SHARDS in Constant Space 
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Experimental Evaluation 

r  Data collection 
r  SaaS caching analytics 
r  Remotely stream 

VMware vscsiStats 
r  124 trace files 

r  106 week-long traces  
CloudPhysics customers 

r  12 MSR and 6 FIU 
traces SNIA IOTTA 

r  LRU, 16 KB block size 
33 
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Dynamic Rate Adaptation 
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r  Adjust sampling rate 
r Start with R = 0.1 
r Lower R as M increases 
r Shape depends on trace 

r  Rescale histogram 
counts 
r Discount evicted 

samples 
r Correct relative 

weighting 
r Scale by Rnew / Rold 
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Error Analysis 
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r  Mean Absolute Error 
(MAE) 
r  | exact – approx |  
r Average over all cache 

sizes 
r  Full set of 124 traces 
r  Error ∝ 1 / √smax 
r  MAE for smax = 8K 

r 0.0027 median 
r 0.0171 worst-case 
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Memory Footprint 
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r  Full set of 124 traces 
r  Sequential PARDA 
r  Basic SHARDS 

r  Modified PARDA 
r  Memory ≈ R × baseline for 

larger traces 

r  Fixed-size SHARDS 
r  New space-efficient code 
r  Constant 1 MB footprint 
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Processing Time 
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r  Full set of 124 traces 
r  Sequential PARDA 
r  Basic SHARDS 

r  Modified PARDA 
r  R=0.001 speedup 41–1029×  

r  Fixed-size SHARDS 
r  New space-efficient code 
r  Overhead for evictions 
r  Smax= 8K speedup 6–204×  
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