Application-Level Benchmarking with
SPEC SFS® 2014

Nick Principe – EMC
Vernon Miller – IBM
Agenda

- Why application-level benchmarking?
- What is application-level benchmarking?
- The SPEC SFS 2014 Workloads
 - Reporting SFS 2014 Results
- Testing a “Storage Solution”
- Ramifications of application-level benchmarking
 - Concepts
 - Real-life examples
- Key takeaways
- Q&A
The Standard Performance Evaluation Corporation (SPEC) is a non-profit corporation formed to establish, maintain and endorse a standardized set of relevant benchmarks that can be applied to the newest generation of high-performance computers. SPEC develops benchmark suites and also reviews and publishes submitted results from member organizations and other benchmark licensees.

www.spec.org

SPEC and SPEC SFS are registered trademarks of the Standard Performance Evaluation Corporation. Additional product and service names mentioned herein may be the trademarks of their respective owners.
Why application-level benchmarking?

- The focus of the SFS benchmark has changed in SFS 2014
 - Load is now generated at the application level
 - The aim is to measure the storage performance of the environment as a whole
 - We call this the “Storage Solution”
 - Vendors now have the flexibility to configure the benchmark to match their environment
 - Put the bottleneck where you want to show value
Why application-level benchmarking?

- Increased flexibility addresses the market
 - Complexity of storage solutions
 - Diversity of architectures and protocols
 - Fairness to all implementations
- Any other approach is no longer appropriate for industry-standard benchmarking of storage solutions
What is Application-Level Benchmarking?

- Prior to SFS 2014, benchmark generated its own NFS or SMB traffic
 - Bypassed load generator operating system
 - Focus: performance of monolithic NAS server
- SFS 2014 uses native OS calls to generate application-level load
 - Data and metadata ops processed by OS
 - Focus: storage performance of the environment as a whole (Storage Solution)
The SPEC SFS 2014 Workloads

- DATABASE
 - Simulates OLTP database consolidation
 - Measured in # of concurrent DATABASES
- SWBUILD
 - Simulates large software project compilation
 - Measured in # of concurrent BUILDS
- VDA
 - Simulates acquisition of streaming data
 - Measured in # of concurrent STREAMS
- VDI
 - Simulates heavy steady-state VDI workload
 - Measured in # of concurrent DESKTOPS

For more details, see:
- The SPEC SFS 2014 website http://www.spec.org/sfs2014
Reporting SFS 2014 Results

- Disclosure of SPEC SFS 2014 results must meet the requirements of
 - SPEC SFS 2014 License
 - SPEC SFS 2014 Run and Reporting Rules
 - SPEC Fair Use Rules
- Submission to SPEC for review encouraged
- Certain information is required to be disclosed
 - Do not use this presentation as a guide for public disclosure of SFS 2014 results
 - Created for education under auspices of SPEC using “generic” environments
Testing a “Storage Solution”

- More attention to benchmark configuration required
 - You must put the bottleneck in the right place
 - Understanding the whole system, from load generator to the disks, is a requirement
 - For publication, more configuration details must be recorded and disclosed
- SFS 2014 is still a storage benchmark
 - There is no attempt to simulate compute load
Ramifications of application-level benchmarking: Concepts

- Your load generators matter
 - Any config detail can affect performance
 - Storage connectivity, OS version, patch level, memory, client count, tuning parameters
- You can test anything that provides a file API to an application
 - Traditional NAS server, block storage with a file system on load generators, hyper-converged solutions, a single server with storage
Ramifications of application-level benchmarking: Concepts

- With great power comes great responsibility
 - Understand where your bottleneck is
 - SFS 2014 allows great flexibility in load placement as the workload scales
 - Getting this right is the key to getting the performance you expect
 - Likely you want to spread load as evenly as possible across ALL resources as the benchmark ramps up load

- The key config parameter in SFS 2014?
 - CLIENT_MOUNTPOINTS
Ramifications of application-level benchmarking: Concepts

- Measuring performance at multiple levels of the solution under test is key to understanding your solution’s performance and bottlenecks
 - SFS 2014 reports application-level performance
 - Other statistics that are helpful to collect:
 - Storage array statistics, NAS server statistics, Hypervisor statistics, LG OS statistics
- You may see different performance at the different levels
 - Each layer of the solution under test may change the workload
Ramifications of application-level benchmarking: Real-life Examples (Env 1)

- Configured an environment for testing
 - Midrange Storage Array
 - FC drives, FC frontend
 - Large Windows Server 2012 R2 NAS Server
 - FC backend, 48 cores, 256GB memory, 10GbE frontend
 - 20 Windows 8.1 VMs; 10 physical servers
 - FC or 10GbE SMB3 connectivity, 2 cores, 2 GB memory

- Testing was done in two ways
 - Via SMB3 shares from NAS server (10GbE)
 - Via local E: drive, FC LUN via RDM to VM (FC)
Ramifications of application-level benchmarking: Real-life Examples (Env 1)
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

- Configured an environment for testing
 - Midrange Storage Array
 - SAS drives, FC frontend
 - 4 Node Distributed Filesystem
 - 2 nodes with FC backend, DDR IB cluster network
 - 2 nodes acting as NFS server, 10 GbE frontend
 - 2 NFS Clients
 - RHEL 6.5, 10GbE connectivity, 4 cores, 32 GB memory
- Testing was done in two ways
 - Via NFSv3 exports from NAS server (10GbE)
 - Via local filesystem: single namespace on 2 nodes
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

Load generators for NFSv3 tests

NFS Server Measurements

Disk Measurements

Network Measurements

Application Measurements

Load generators for local filesystem tests
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

VDA - NFS

VDA - Cluster FS
Ramifications of application-level benchmarking: Real-life Examples (Env 1)

VDA - SMB

VDA - Local FS

Streams

Kibibytes/sec

App Read App Write Net Recv

Net Send Disk Read Disk Write

Streams

Kibibytes/sec

App Read App Write

Disk Read Disk Write
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

VDA - NFS

VDA - Cluster FS

Operations/Second vs Streams

- App
- NFS Total
- NFS Data
- NFS Meta
- Disk

- App
- Disk
Ramifications of application-level benchmarking: Real-life Examples (Env 1)
Ramifications of application-level benchmarking: Real-life Examples

VDA - Env 1

VDA - Env 2
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

VDI - NFS

VDI - Cluster FS

- App Read
- App Write
- Net Recv
- Net Send
- Disk Read
- Disk Write

Kilobytes/Second vs. Desktops
Ramifications of application-level benchmarking: Real-life Examples (Env 1)
Ramifications of application-level benchmarking: Real-life Examples (Env 2)
Ramifications of application-level benchmarking: Real-life Examples (Env 1)

VDI - SMB

Operations/sec vs Desksops

- App
- SMB Total
- SMB Data
- SMB Meta
- Disk

VDI - Local FS

Operations/sec vs Desksops

- App
- Disk
Ramifications of application-level benchmarking: Real-life Examples

VDI - Env 1

VDI - Env 2

SMB3 Local

NFSv3 Local
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

VDI - NFS (Read Bandwidth)
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

SWBUILD - NFS

<table>
<thead>
<tr>
<th>Builds</th>
<th>Kilobytes/Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

SWBUILD - Cluster FS

<table>
<thead>
<tr>
<th>Builds</th>
<th>Kilobytes/Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

- **App Read**
- **App Write**
- **Net Recv**
- **Net Send**
- **Disk Read**
- **Disk Write**
Ramifications of application-level benchmarking: Real-life Examples (Env 1)

SWBUILD - SMB

SWBUILD - Local FS
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

SWBUILD - NFS

- **Operations/Second**
- **Builds**

SWBUILD - Cluster FS

- **Operations/Second**
- **Builds**

Legend:
- App
- NFS Total
- NFS Data
- NFS Meta
- Disk
- App
- Disk
Ramifications of application-level benchmarking: Real-life Examples (Env 1)

SWBUILD - SMB

Operations/sec vs Builds

SWBUILD - Local FS

Operations/sec vs Builds
Ramifications of application-level benchmarking: Real-life Examples

SWBUILD - Env 1

- **Average Response Time (ms)**
- **Achieved Ops/sec**
- **SMB3**
- **Local**

SWBUILD - Env 2

- **Average Response Time (ms)**
- **Achieved Ops/Sec**
- **NFSv3**
- **Local**
Ramifications of application-level benchmarking: Real-life Examples (Env 2)

Percent of I/O

SWBUILD NFSv3

SWBUILD Local

Disk Access

Client Cache Hit

NAS Server Cache Hit

Cluster/Disk Cache Hit
Key takeaways

- The SPEC SFS 2014 is an application-level benchmark that tests the storage performance of an entire storage solution.
- Understanding the storage solution under test and bottleneck placement are keys to getting “what you expect” from your storage solution.
- The application-level benchmarking provided by SFS 2014 allows testing of a much wider array of products and storage solutions.
Q & A

☐ Any questions?

☐ Thank you for attending!
 ☐ Please remember to submit feedback!