

Load-Sto-Meter: Generating Workloads for Persistent Memory

Damini Chopra, Doug Voigt Hewlett Packard (Enterprise)

Application vs. Pure Workloads

Benchmarks that reproduce application workloads

- Assist in system provisioning
- Assist in tuning for nuances of particular applications
- Get more accurate results
- Pure workload generators
 - Assist in characterizing basic system performance
 - Assist in locating root causes of performance issues
 - Evaluate design trade-offs in prototype systems
 - Explore best/worst application performance
 - Enable finer grained analysis than profiling

Difference Between IO and PM Workloads

- Byte Addressability
- No software involved in CPU Load/Store instructions
- Additional sync operation
 - Avoid context switch from user space to kernel space (no I/O syscalls)
 - Eliminate expensive sync operations to disk by introducing CPU Memory syncs

Role of Pure Workload Generator

Analyze the performance and behavior of Persistent Memory

- Tune the parameters of Load-Sto-Meter
- Simulate real application behavior
- Provide aggressive Multithreaded Benchmarking
- Analyze PM sync mechanism versus DISK sync
 - in terms of performance and reliability
 - over various parameterized workloads
- Evaluate PM sync implementations

NVM Programming Model – Map and Sync

Basic Ld/St/Sync Template

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Workload Generation Parameters

- Store to Sync ratio
- Read to Write Ratio
- Workload Threads
- Shared v/s Private memory access
- Sequential v/s Random memory access
- Granularity of Memory Access (Load/Store record size)
- PM Data Structures
- NUMA switch

Typical Output

SD

15

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Abstracting Syncs

- **Sync implementation depends on many things**
 - Disk vs. PM
 - User vs. Kernel space
 - Processor instruction set
 - Additional features such as High Availability
- Performance is sensitive to NVM.PM.SYNC implementations
- NVM Programming Model specifies sync/optimized flush abstraction
 - Application independent
 - Processor architecture independent
 - Implementation independent
- Workload generator should support multiple sync implementations
 - User plug in feature for their own implementation of sync
 - Easily test multiple PM aware file systems with the same workload

Multi-Threading

Sources of Performance Noise

- Trade-off between performance and thermal management policy of OS
- Partial utilization of CPU, causing discrepancies in acquiring pure load/store performance
- Hyper-threading management, while trying to embark equal workload on each core of the processor

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

A new type of workload generator is needed!

Performance measurement specification?

- Workload generation parameters
- Definition of parameter driven behavior
- Implementations?
 - Commercial opportunity
 - Open source opportunity
 - □ SNIA SW TWG?
 - Open source contributions?

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Load-Sto-Meter: Generating Workloads for Persistent Memory

Thank You