
2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

SSD-friendly Design Changes at
Various Software Tiers

Zhenyun Zhuang
LinkedIn Corp.

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Introduction

2

www.QuoteCorner.com

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline
 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with

SSD
 File Systems
Data Infrastructure
Application designs
System configurations
Performance measurement and benchmarking
Database

 Conclusion
3

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Introduction

• Application performance improves when using SSD (vs. HDD)

SSD is getting popular

• Naive treatment of SSD results in sub-optimal performance

SSD merely treated as faster “HDD” by many people

• File System
• Data infrastructure
• Application
• System configuration
• Performance measurement
• Database

SSD deserves new designs at many computing tiers

4

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

What we will discuss in this talk?

5

Why does SSD require special
designs at various tiers? Why?
How does SSD work internally
(and differently from HDD)? How?
What are the SSD-friendly
design changes at various tiers? What?

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Why do we need SSD-friendly design?

• Benefits the particular software/application
• E.g., higher throughput, lower response latency

Better software performance

• Allows more applications to share the same storage
• Enables denser deployment

More efficient storage IO

• Reduces business cost
• Saves a lot of troubles caused by dead SSD

Longer SSD life

6

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

0

50000

100000

150000

0 1 2 3 4 5 6 7 8 9 10

Throughput
 (qps) Naïve adoption of SSD is sub-optimal

I. Better software performance

Simply replacing HDD
with SSD

• Performance improves
but sub-optimal

Redesigning software
to make them SSD-

friendly

• Could achieve much
higher performance gains

Example application

• HDD storage: maximum
142 qps

• Simply moving to SSD:
20K qps

• Being SSD-friendly: 100K
qps (5X improvement)

7 ?

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

0

50000

100000

150000

0 1 2 3 4 5 6 7 8 9 10

Throughput
 (qps) Naïve adoption of SSD is sub-optimal

I. Better software performance

Simply replacing HDD
with SSD

• Performance improves
but sub-optimal

Redesigning software
to make them SSD-

friendly

• Could achieve much
higher performance gains

Example application

• HDD storage: maximum
142 qps

• Simply moving to SSD:
20K qps

• Being SSD-friendly: 100K
qps (5X improvement)

8 Number of IO threads

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Inefficient write results in far
more bytes written to SSD

II. More efficient storage IO

9

• Read/Write at least page size (4KB)
• One byte write cause at least 4KB

written

• Echo “SSD” > foo.txt // Effective: 3 bytes
• SSD writes: 11 pages or 44KB

File system induced overhead

• 1GB/s SSD IO bandwidth could be
saturated by a mere 256KB/s
application IO rate (read or write).

SSD also has limited IO bandwidth

• How many applications can be co-
located to share the same SSD?

• More efficient usage of SSD allows
more applications to co-exist.

Denser deployments

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

III. Longer SSD life

10

• SSD can only be “written” certain number of times before dying
• Costly: Saving SSD life is saving $

SSD wears out

• SSD size: S
• P/E cycles: W
• Write amplification factor: F
• Application writing rate: R
• SSD life:

How long can a SSD live?

• Help lengthening SSD life

Being SSD-friendly

SSD
Type

P/E
Cycles

WA
Factor

Life
(Months)

MLC 10K 4x 10

MLC 10K 10x 4

TLC 3K 10x 1

SSD Size: 1TB
Application Write Rate: 100 MB/s

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline

 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with SSD

 File Systems
 Data Infrastructure
 Application designs
 System configurations
 Performance measurement and benchmarking
 Database

 Conclusion
11

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

SSD IO Operations and Garbage Collection

12

IO operations

• Reading: page level; constant time; at microsecond
level

• Writing: page level; depend on state; a few
hundreds of microseconds or a few milliseconds

• Erasing: block level; a few millisecond

GC (Garbage Collection)

• No “over-writing” in SSD
• Compact blocks/pages to free a block for GC
• Background GC
o Non-blocking

• Foreground GC
o Performed online
o Slow (blocking)

Page (Stale)

Block (to be erased)

Page (Live)

Page (Stale)

Block (compact dest.)

Page (Stale)

Page (Live)

Page (Live)

(1)

(2)

(3) (4)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Wear Leveling and Write Amplification

13

• Blocks have limited P/E cycles (Program/Erase, erasure times)
o SLC: 100K; MLC: 10K; TLC: a few K

• Balancing write actions among blocks

Wear Leveling

• Physical write size is larger than logic (application) write size
• WA factor is the ratio; the smaller the better
• Key contributors of WA
o Page-size write
o FS-induced operations
o Garbage Collection (GC)
o Wear leveling

Write Amplification

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Internal Parallelism

• IO bandwidth: a few GB/s vs. NAND-flash bus only 40MB/s
• IO latency: hundreds of K IOPS vs. MLC Read of 50 us and write of up to 1ms

Limitations of non-parallelism

• Channel-level, Package-level, Chip-level, Plane-level (NOT taco-level!)

Multiple levels of parallelism

14

Flash
Controller

Channel 0

Package Package

Channel 1

Block

Block

Block

Plane 0

Block

Block

Block

Plane 1

Chips

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline

 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with SSD

 File Systems
 Data Infrastructure
 Application designs
 System configurations
 Performance measurement and benchmarking
 Database

 Conclusion

15

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

What are the design changes at File System tier?

16

• Pro: Random access vs. sequential access
• Con: Blocks need to be erased for overwriting
• Con: SSD’s write amplification caused by internal mechanisms

Key SSD characteristics (vs. HDD) that drive FS change

• General FS adapted for SSD
o Supporting TRIM
o Examples: Ext4, XFS, JFS, Btrfs

• Specially designed FS for SSD
o Adopting log-structure
o Examples: ExtremeFFS, NVFS, JFFS/JFFS2/LogFS, F2FS

Two types of SSD-friendly FS

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

“Log structure”－ New wine in old bottle

• Data and metadata always written to circular buffer (or file tail)

Always sequential writing

• Sequential writing vs. random writing
• LFS (log-structured file system)
• HDFS commit log
• Oracle Database redo log

Log structure in HDD world

• “Read-modify-write” to only “write”
• Minimize wear leveling to reduce write amplification factor

Log structure in SSD world

17

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline

 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with SSD

 File Systems
 Data Infrastructure
 Application designs
 System configurations
 Performance measurement and benchmarking
 Database

 Conclusion

18

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

What are the design changes at Data Infra tier?
- Revisiting conventional design rationales

Conventional
assumptions
may not hold!

Local disk vs. remote memory (another node)

Used to favor remote memory (though with added
network hops, deployment complexity, operation cost)

19

Before
(with HDD) Local Disk Remote Memory

Latency A few milliseconds A few microseconds

Bandwidth 100 MB/s 120 MB/s (Gbit), 1.2 GB/s (10Gbit)

Now
(with SSD) Local Disk Remote Memory

Latency A few microseconds A few microseconds

Bandwidth Up to a few GB/s 120 MB/s (Gbit), 1.2 GB/s (10Gbit)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

What are the design changes at Data Infra Tier?
- An example of removing memcached layer

20

Cassandra + Memcached
 Assumptions

• 10 Cassandra nodes

•Requiring caching
10TB of data

Before

• 100GB RAM per
memcached

•Needs100
memcached nodes

After

• Each Cassandra
adds 1TB SSD

Cost:

• Before: 100 nodes

•After: 10 SSDs

Cassandra Memcached

Memcached

......

Memcached Cluster

SSD

SSD

SSD

Cassandra

……

Cassandra

Cassandra

……

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline

 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with SSD

 File Systems
 Data Infrastructure
 Application designs
 System configurations
 Performance measurement and benchmarking
 Database

 Conclusion

21

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

What are the design changes at application tier?

• Avoid in-place update optimizations
• Separate hot data from cold data
• Adopt compact data structure

Data structure

• Avoid long heavy writes
• Prefer not mixing write and read
• Prefer large IO aligned on pages/blocks/more

IO handling

• Use multiple threads (vs. few threads) to do small IO
• Use few threads (vs. many threads) to do big IO

Threading

22

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Data structure
- Avoid in-place update optimizations

• Optimized for in-place updates
(write to the same offset)

• HDD seeking is very costly

Conventional HDD storage

• In-place updates are unnecessary
• IO is slower: “read-modify-write”
• Penalizing SSD: read-disturbance

SSD storage

• Unless non-in-place updates
greatly complicate design

• Consider log-structured updates

No in-place update optimizations

23

170

280

0 100 200 300

Random

In-place

QPS (HDD)

19.8

19.1

0 5 10 15 20

Random

In-place

K QPS (SSD)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Data structure
- Separate hot data from cold data

24

• Page-size IO access and Block-size GC
• Mixing hot/cold data causes useless IO on cold data

Data are not equally active

• Reduced application performance (Throughput, response time)
• Decreased IO efficiency (IO bandwidth)
• Increased SSD wear out (life)

Performance penalties of mixing hot/cold

• Bad example: Store user profiles based on registration time
• Spaced by at least page-size, e.g., different files, different portions

in files, different tables

Store hot/cold data separately

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Data structure
- Adopt compact data structure

• Page-size (e.g., 4KB) write and read
• Block-size (e.g., 1MB) erase

IO characteristics of SSD

• Increases locality of read/write
• Read/write fewer physical bytes

Store data more compactly

• Use a single file
• Use many files (telephone number, age, address, etc.)

Example: Storing user profile data

25

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

IO handling
- Avoid long heavy writes

26

Long heavy writes will
trigger foreground GC

• Background GC can absorb light writes
• If background GC cannot keep up, foreground GC will kick in

Foreground GC severely
degrades write
performance

• Every write needs block erasure
• Block erasure takes up to 2ms (Degrades to HDD-like perf)

0 0 14 20
61

10 50 200 500 800
Write Rate (MB/s)

of large latencies (>50ms)

How to avoid long heavy
writes?

• More efficient IO
• Use multiple SSD and/or remote storage
• Consider other persistency methods (e.g., Kafka streaming)

8 26
58 63

91

0

50

100

10 50 200 500 800

Write Rate (MB/s)

Max Write Latency (ms)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

IO handling
- Prefer not mixing write and read

27

• SSD-Internal shared resources: e.g., Lock-protected mapping table
• SSD pipelining of moving data: e.g., flash, register, controller
• File System: Read-ahead and write-back

Degraded IO rate
• Depends on SSD implementations and workload
• Can hurt either write or read or both

9

20.5

1

21.5

0
5

10
15
20
25

Write Rate (MB/s) Read Rate (MB/s)

Write/Read rate in diff. scenarios (Random IO, 102 bytes)

Pure Write or Read

Mixed Write and Read

Avoid mixing at
the same time

• Phase heavy read and heavy write
• Consider multiple SSD or storage media

Read and write
interfere each

other

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

IO handling
- Prefer large IO, aligned on page/block/more

• Writing/reading by page
• Erasing by block
• Using clustered blocks

Why large IO

• Increased IO efficiency
• Reduced Write Amplification factor
• Higher throughput from internal parallelism

Benefits of large IO

• Reducing by one page/block when data crossing borders
• Faster IO

Why aligned on pages/blocks

28

Block

Block

Plane 0

Block

Block

Plane 1

Block

Block Block

Block

Clustered Block

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Threading
- Use many threads (vs. few) to do small IO

• Take advantage of internal parallelism, i.e., channel-level, package-level,
chip-level, plane-level

Why many threads?

• Depends on how compactly the data are stored
• Page-compacted: (page size)*(parallelism level), e.g., 4KB*16=64KB
• Block-compacted: (block size) * (parallelism level), e.g., 0.5MB*16=8MB

How small is “small”?

29

115
201

358
496

0

200

400

600

1 2 4 8
Number of IO threads

Aggregated IO rate (MB/s) (10 KB IO size)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Threading
- Use few threads (vs. many) to do big IO

• SSD controller already uses internal parallelism with big IO
• Threads interfere each other (e.g., sharing SSD resources)
• Threads interfere other applications (e.g. pre-fetching)

Why not many threads?

• Depends on data layout
• Larger than (block size)*(parallelism level), e.g., 0.5MB*16=8MB

How big is “big”?

30

414
816 912

520

0
200
400
600
800

1000

1 2 4 8
Number of IO threads

Aggregated write rate (MB/s) (10MB IO size)

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline
 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with

SSD
 File Systems
Data Infrastructure
Application designs
System configurations
Performance measurement and benchmarking
Database

 Conclusion

31

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Avoid full disk usage

32

• Write Amplification factor due to GC
• Write latency during foreground GC

Performance impact of disk usage

• Number of blocks to be compacted
• Assuming A% disk usage, a single erasure

compacts blocks:
• A=50: 2 blocks
• A=80: 5 blocks

• Number of pages to be compacted
• Assuming P pages per block, a single

erasure compacts pages:
• P=128, A=50: 128 pages
• P=128, A=80: 512 pages

GC needs to compact blocks/pages 0

10

20

30

0 20 40 60 80 100
Disk usage (%)

Compacted blocks for erasing a block

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

Disk usage (%)

Compacted pages for erasing a block

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Be careful when swapping on SSD

• Faster (100+x faster than HDD)

Benefits of swapping on SSD

• Swapping wears out SSD quickly
• A fast storage may hurt performance
• OS read-ahead fills the cache too fast and encourages swapping out
• Observed on Voldemort

Problems of swapping/storing on SSD

• Swapping performance is the primary concern
• Less concerned with SSD life and cost

• Swapping rarely happen
• Swappiness value set to low to discourage swapping

When to swap on SSD

33

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline

 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with SSD

 File Systems
 Data Infrastructure
 Application designs
 System configurations
 Performance measurement and benchmarking
 Database

 Conclusion

34

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Performance measurement and benchmarking

Major pitfalls

• Performance depends
on the previous state

• Foreground GC

Recommendations

• Stress SSD for long
time to stabilize

• Use representative
workload

Example: SSD IO
performance

• Synchronous writing;
Write rates iterates
between 15 MB/s and
500 MB/s

35

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline

 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with SSD

 File Systems
 Data Infrastructure
 Application designs
 System configurations
 Performance measurement and benchmarking
 Database

 Conclusion

36

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

What are the design changes at Database tier?

37

• Flash only Database (e.g. Aerospike)
• Hybrid flash-HDD systems

Two types of SSD-friendly Database

• IO Concurrency
o One thread per database connection is sub-optimal

• Data structure
o B-tree vs. Log-structured tree

• Data layout
o Locality matters differently
o Column-oriented vs. Row-oriented

Key design changes

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Outline

 Introduction
 Motivation
 SSD internals
 Design changes at different tiers for working with SSD

 File Systems
 Data Infrastructure
 Application designs
 System configurations
 Performance measurement and benchmarking
 Database

 Conclusion

38

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Key take-away

• SSD has its own unique mechanisms, e.g., no-overwriting, GC

Don’t treat SSD as simply a faster HDD

• True that SSD has better performance than HDD
• But it may not be fully utilized

Take full advantage of SSD

• File Systems
• Data infrastructure
• Application designs
• System configurations
• Performance measurement and benchmarking
• Database

Design changes at various tiers

39

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Looking into the future

40

• Two or three orders of improvements on IOPS
• One order of improvement on throughput

NAND SSD is much faster than HDD

Source: intel.com

• 1000X faster (iops/rate)
• 1000X endurance (life)
• 10X denser (capacity)

Imagine a new storage
that is 1000X faster?

• Intel/Micron 3D SSD

What design changes
can you imagine?

2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

References (Partially)
 Solid state drive: https://en.wikipedia.org/wiki/Solid-state_drive
 Flash file system: https://en.wikipedia.org/wiki/Flash_file_system
 Netflix blog: http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
 Voldemort on SSD: https://engineering.linkedin.com/voldemort/voldemort-solid-state-drives
 Coding for SSD: http://codecapsule.com/2014/02/12/coding-for-ssds-part-1-introduction-and-table-of-contents/
 Intel and Micron’s 3D XPoint Technology http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-

breakthrough-memory-technology
 SSD and Distributed Data Systems: http://blog.empathybox.com/post/24415262152/ssds-and-distributed-data-systems
 Co-design of application software and NAND…, http://radar.oreilly.com/2014/08/how-flash-changes-the-design-of-database-storage-engines.html
 F2FS: a new file system for flash storage, USENIX FAST 2015
 FlashGraph: processing billion-node graphs on an array of commodity SSDs, USENIX FAST 2015
 Wear Unleveling: Improving NAND Flash Lifetime by Balancing Page Endurance, USENIX FAST 2014
 Extending the Lifetime of Flash-based Storage through Reducing Write Amplification from File Systems, USENIX FAST 2013
 Consistent and durable data structures for non-volatile byte-addressable memory, USENIX FAST 2011
 Impact of Data Locality on Garbage Collection in SSDs: A General Analytical Study, ACM ICPE 2015
 NAND flash memory-based hybrid file system for high I/O performance, IPDPS 2012
 Parallel I/O aware query optimization, ACM SIGMOD 2012
 Essential Roles of Exploiting Internal Parallelism of Flash Memory based Solid State Drives in High-Speed Data Processing, 2011 IEEE HPCA
 A column-oriented storage query optimization for flash-based database, Future Information Technology and Management Engineering (FITME), 2010
 Revisiting Database Storage Optimizations on Flash, Tech Report of Computer Science at University of Wisconsin Madison
 Query processing techniques for solid state drives, SIGMOD 2009
 Lazy-Update B+- Tree for flash devices, Mobile Data Management, 2009
 Lazy-Adaptive Tree: An Optimized Index Structure for Flash Devices, VLDB 2009
 Programming models for emerging non-volatile memory technologies, Andy Rudoff
 Patent (filed): LI-P1648.LNK.US, TRANSPARENT HYBRID DATA STORAGE (Zhenyun Zhuang)
 Paper (in preparation): Designing SSD-friendly applications
 Paper (in preparation): HSL: A Hybrid Storage Layer Harnessing SSD and HDD

41

https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Flash_file_system
http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
https://engineering.linkedin.com/voldemort/voldemort-solid-state-drives
http://codecapsule.com/2014/02/12/coding-for-ssds-part-1-introduction-and-table-of-contents/
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://blog.empathybox.com/post/24415262152/ssds-and-distributed-data-systems
http://radar.oreilly.com/2014/08/how-flash-changes-the-design-of-database-storage-engines.html

	SSD-friendly Design Changes at Various Software Tiers
	Introduction
	Outline
	Introduction
	What we will discuss in this talk?
	Why do we need SSD-friendly design?
	I. Better software performance
	I. Better software performance
	II. More efficient storage IO
	III. Longer SSD life
	Outline
	SSD IO Operations and Garbage Collection
	Wear Leveling and Write Amplification
	Internal Parallelism
	Outline
	What are the design changes at File System tier?
	“Log structure”－ New wine in old bottle
	Outline
	What are the design changes at Data Infra tier?�- Revisiting conventional design rationales
	What are the design changes at Data Infra Tier?�- An example of removing memcached layer
	Outline
	What are the design changes at application tier?
	Data structure�- Avoid in-place update optimizations
	Data structure�- Separate hot data from cold data
	Data structure�- Adopt compact data structure
	IO handling�- Avoid long heavy writes
	IO handling�- Prefer not mixing write and read
	IO handling�- Prefer large IO, aligned on page/block/more
	Threading�- Use many threads (vs. few) to do small IO
	Threading�- Use few threads (vs. many) to do big IO
	Outline
	Avoid full disk usage
	Be careful when swapping on SSD
	Outline
	Performance measurement and benchmarking
	Outline
	What are the design changes at Database tier?
	Outline
	Key take-away
	Looking into the future
	References (Partially)

