
2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Developing Software for 
Persistent Memory  

Thomas Willhalm, Karthik Kumar 
Intel Corporation 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Disclaimer 
By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below. 

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein.  You agree to grant Intel a non-
exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein. 

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL 
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING 
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER 
INTELLECTUAL PROPERTY RIGHT.  

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S 
PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND 
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES 
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL 
APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS 
PARTS.  

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked 
"reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The 
information here is subject to change without notice. Do not finalize a design with this information.  

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized 
errata are available on request.  

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  

This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information. 

Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may 
affect actual performance. 

Intel, the Intel logo, are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States or other countries.  

Copyright © 2015 Intel Corporation. All rights reserved 

*Other brands and names may be claimed as the property of others. 

2 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Intel 3D XPoint Technology 

 https://youtu.be/OaAjLyPtoyE 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Key Messages at the Announcement 

Intel and Micron begin production on a new class of non-volatile memory, 
creating the first new memory category in more than 25 years since the 
introduction of NAND Flash memory in 1989 
 Up to 1000 times faster1 than NAND 
 Up to 1000 times greater endurance2 than NAND 
 10 times denser than conventional memory3 

 
Built from the ground up, 3D XPoint™ technology uses an innovative, 
transistor-less memory cell architecture creating a three-dimensional 
checkerboard with perpendicular wires connecting submicroscopic 
columns. Each memory cell sits at the intersection of a word line and a bit 
line and can be addressed individually by selecting its top and bottom wire 
 

1 Performance difference based on comparison between 3D XPoint technology and other industry NAND 
2 Endurance difference based on comparison between 3D XPoint technology and other industry NAND 
3 Density difference based on comparison between 3D XPoint technology and other industry DRAM 
 
 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Agenda 

 Technology Differentiators 
 Benefits and caveats to persisting data structures 
 Why programming to persistent memory is different 

 Case study: Design of a Persistent Memory Enabled Database 
 Design decisions 
 Evaluation methodology 

5 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Technology Differentiators 

6 

Differentiators for Persistent Memory Technologies 

Large capacity Higher density will allow larger DIMMs 

Persistence Data stored in PMem will remain in memory after reboot 

Higher latencies Latencies higher than DRAM (100ns) but much less than 
latest gen-PCIe SSDs (10,000 ns) 

What value do these technology differentiators offer? 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Opportunity: Persistence in Memory Tier 

7 

Use-case where memory meets disk is a potential game changer for applications 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Opportunity: Large Capacity 

 Larger datasets in memory: Less paging, improved performance 
 Scale-up vs. scale-out for in-memory solutions: Single coherent 

address space, avoid commit protocols for transactions 
 

8 

Large capacity: avoid disk accesses, benefit in-memory computing 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Opportunity: Why Restart Time Matters 

9 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Caveat: Higher Memory Latencies 

 Why not hold all data in PMem: higher latencies 
 What are considerations for moving a data structure to 

PMem? 

10 

Data Layout and Size  

• Can caching hide 
latency for data 
layout/size? Example: 
Arrays vs. linked lists 

Frequency of Access 

• Are data references 
frequent & 
performance-critical? 
Example: cold vs. hot 
stores  

Pattern of Access 

• Are data access 
patterns prefetch & 
cache friendly? 
Example: hash lookups 
vs column scans  

Need to identify application performance sensitivity for persisted data structures 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Software Architecture: Persistent Memory 

11 

Can the application benefit from 
larger memory capacity? 

Can the application benefit from 
persistence? 

Test latency tolerance of 
unmodified application 

Persistent Memory 
for capacity benefit 

Identify latency, bandwidth 
sensitive data-structures 

Identify which data-structures 
should be in PMem 

Prototype application based on 
PM/DRAM layout  

Quantify performance impact  
(different latency/bandwidth)  

Quantify value proposition due 
to persistence/capacity 

Decide if the tradeoff is 
acceptable Persistent Memory 

yes 

high 

low 

yes 

no 

no 
yes 

DRAM 
no 

Systematically identify which data structures can benefit from Persistent Memory 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Application is Responsible for Durability 

New instructions needed for apps to explicitly commit stores to durability 

• Need to regularly push stores out of processor caches to NVM 
• Need to commit outstanding stores in volatile buffers to NVM 

Core Cache 

 N
V 

D
IM

M
 

N
V 

D
IM

M
 

N
V 

D
IM

M
 

Core writes 
CL to cache 

CL evicted 
from cache 

CL persisted 
in PMem 

12 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

13 

Flushing Writes from Caches 

Instruction Meaning 

CLFLUSH addr Cache Line Flush: 
Available for a long time 

CLFLUSHOPT addr Optimized Cache Line Flush: 
New to allow concurrency 

CLWB addr 
Cache Line Write Back: 
Leave value in cache 

for performance of next access 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

14 

Flushing Writes from Memory Controller 

Mechanism Meaning 

PCOMMIT 
Persistent Commit: 

Flush stores accepted by 
memory subsystem 

Asynchronous DRAM Refresh 
Flush outstanding writes 

on power failure 
Platform-Specific Feature 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Persisting Data on the Fly: Example 

15 
New instructions CLFLUSHOPT and PCOMMIT required to make stores durable 

Cache PMem 

var 1 1 

persisted True True 

Int var = 0; 
Bool persisted = false; 
 
… 
var = 1; 
MFENCE; 
Flush var; 
MFENCE; 
persisted = true; 
MFENCE; 
Flush persisted; 
MFENCE; 
… 

Cache PMem 

var 1 0 

persisted True True 

Cache PMem 
var 0 0 

persisted False False  

Before 

After (incorrect) 

After (correct) 

Not flushed 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Persistent Memory Aware Filesystems 

 No buffering in DRAM on mmap  direct access to PMem 
 Examples are PMFS (research), or ext4 and xfs + new "dax" mount 

(4.0 kernel onward) 

 

16 

Byte addressable Access to PMem without kernel overhead for load/stores  
ATTEND: Planning for the Next Decade of NVM Programming (Andy Rudoff)  

NVM DIMM 

User 
Space 

Kernel 
Space PMem Block Driver 

File System 

     Application 

Block File Memory 

Load, 
Store 

  Standard 
File API 

PMem-
aware FS 

MMU 
Mappings 

Cache 
Line Block 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Persistent Memory Programming 
• Intel has released a set of open source persistent memory libraries 

• https://pmem.io/  
• Example: libpmemobj  provides transactional object store, providing 

memory allocation, transactions, and general facilities for persistent 
memory programming. 

 
 

 
 
 

17 

Website discusses library functions, caveats, suggestions on programming to Pmem 
 ATTEND: Solving the Challenges of Persistent Memory Programming (Sarah Jelinek)  

https://pmem.io/


2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Agenda 

 Technology Differentiators 
 Benefits and caveats to persisting data structures 
 Why programming to persistent memory is different 

 Case study: Design of a Persistent Memory Enabled Database 
 Design decisions 
 Evaluation methodology 

18 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Instant Recovery for Main-Memory Databases 
Ismail Oukid*°, Wolfgang Lehner*, Thomas Kissinger*, Peter Bumbulis°,  

and Thomas Willhalm + 

*TU Dresden  °SAP SE          + Intel GmbH 
 

CIDR 2015, California, USA,  
January 5, 2015 

 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Design Considerations 

20 

Eliminate data copy 
from storage 

• Directly modify data in 
persistent memory 

Eliminate log 
infrastructure 

• Use concurrent and 
persistent data 
structures combined 
with concurrency 
scheme 

Dynamic decision 
making for secondary 

data structures 

• Use performance 
considerations to place 
secondary data 
structures in DRAM or 
PMem (SCM) 

Three main design considerations for instant and point-in-time recovery 

Take full advantage of PMem (SCM)  
to enable instant and point-in-time recovery  



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

SOFORT: A PM-enabled architecture 

21 

SOFORT is a single-level column-store, i.e., the working copy is the durable copy 

Log 

log 
buffer 

buffer pool 

… … 

runtime data 

Traditional Architecture 

 Database 

database 

ru
nt

im
e 

da
ta

 

PM-enabled Architecture 

HDD DRAM PMem 

Log 

Transient 
Main Memory 

Persistent 
Storage 

Transient 
Main Memory 

Non-Volatile 
Main Memory 

Moving the 
persistency 
bar 

 Database 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Implementation Consideration: PMAllocator 

 PMAllocator: 
 Huge PMFS files as memory pages  
 Pages cut into segments for allocation 
 Persistent counter of memory pages 
 Mapping from persistent memory to  

virtual memory 

 

22 

… 

PMFS file = Memory page 

File name = Unique page ID 

Segment 

New mechanisms for allocators required 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Implementation Consideration: PMPtrs 

 Regular pointers are bound to the program‘s address 
space Cannot be used for recovery 

 We propose persistent memory pointers 
 
 
 
 

 PMPtrs can be converted (swizzled) to regular pointers 
and stay valid across failures 
 
 

23 New mechanisms for handling pointers required 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Implementation Consideration: Recovery Path 

24 
New mechanisms required to handle recovery path 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Evaluating Data Structure Latency Sensitivity 

 Hardware-based PMem simulation based on DRAM: 
 Special BIOS, tunable DRAM latency with means of a microcode 

patch 
 Limitation: symmetric instead of asymmetric read/write latency  
 Avoiding NUMA effects: benchmark run on a single socket 
 DRAM Latency: 90ns, simulated PMem latency: 200ns 

 
 

25 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Evaluating Data Structure Latency Sensitivity 
SIMD-Scan performance on DRAM 
and PMem (SCM) 

8% average 
slowdown 

41% average 
slowdown 

Workloads with sequential memory access patterns perform well on PMem 
(SCM) 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Evaluating Data Structure Latency Sensitivity 

Workloads with random memory access patterns do not perform well on SCM: 
We still need DRAM 

Skip List performance on 
DRAM and PMem (SCM) 

47% 49% 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Measuring the Value of Persistence 

Recovery Area 

• Maximum number of 
transactions that 
could have been 
executed if the 
database had not 
failed 

Recovery response time 

• Average query 
response time during 
the recovery process 

Recovery delta 

• Time it takes to 
achieve the pre-
failure throughput 

New metrics to quantify how persistence helps database recovery 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Improving Recovery Performance 

29 

Synchronous Recovery 
 Step 1: Recovery memory management 
 Step 2: Recover primary data 
 Step 3: Continue unfinished statements 
 Step 4: Rebuild secondary data  

structures on DRAM 
 Step 5: Start accepting user queries 

Restart time depends on the size of 
secondary data structures to be rebuilt 

Primary data already “loaded”  

Instant Recovery 
 Idea 1: 
Use primary data to answer queries 
and rebuild secondary data 
structures asynchronously 
 
 
 Idea 2:  
Persist part of or all secondary data 
structures in PMem (SCM) 

Instant responsiveness  

Instant recovery at peak 
performance  

Performance Penalty on throughput 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Evaluation: Recovery Time 

30 

Throughput: -0% 
Recovery area: -16% 
Recovery delta: ~8s 

Synchronous 
Recovery 

Instant Recovery 

0% indexes in SCM 40% indexes in SCM 100% indexes in SCM 

First query accepted 
after ~8s, i.e., Recovery 

delta = 8s 

Throughput: -14% 
Recovery area: -82% 
Recovery delta: <2s 

Throughput: -30% 
Recovery area: -99,8% 
Recovery delta: <5ms 

Different type of tradeoffs possible between throughput and recovery metrics 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Evaluation: Throughput Vs. Recovery 

31 

Curves are not linear: secondary 
data structures are not equally 

important for TATP 

Throughput drop limited to 30% 

Taking advantage of a workload’s characteristics leads to an optimal tradeoff 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Takeaways 

 Persistent Memory offers the game-changing ability to improve 
restart and recovery time, and improve capacity 

 Design process involves deciding which data structures to persist 
 Moving a data structure to PMem avoids the need to load from disk 

on restart altogether 
 Tools, Libraries, Test platforms available 

 



2015 Storage  Developer Conference. © Intel Corp.  All Rights Reserved. 
 

Evaluation: Average Response Time 

Max. avg. (over 100ms) Response 
time: 
• 0% pers. indexes: 506µs 
• 100% pers. indexes: 2µs 

Seek tradeoff depending on: throughput requirements, response time 
requirements, and desired recovery performance 


	Developing Software for Persistent Memory	
	Disclaimer
	Intel 3D XPoint Technology
	Key Messages at the Announcement
	Agenda
	Technology Differentiators
	Opportunity: Persistence in Memory Tier
	Opportunity: Large Capacity
	Opportunity: Why Restart Time Matters
	Caveat: Higher Memory Latencies
	Software Architecture: Persistent Memory
	Application is Responsible for Durability
	Flushing Writes from Caches
	Flushing Writes from Memory Controller
	Persisting Data on the Fly: Example
	Persistent Memory Aware Filesystems
	Persistent Memory Programming
	Agenda
	Instant Recovery for Main-Memory Databases
	Design Considerations
	SOFORT: A PM-enabled architecture
	Implementation Consideration: PMAllocator
	Implementation Consideration: PMPtrs
	Implementation Consideration: Recovery Path
	Evaluating Data Structure Latency Sensitivity
	Evaluating Data Structure Latency Sensitivity
	Evaluating Data Structure Latency Sensitivity
	Measuring the Value of Persistence
	Improving Recovery Performance
	Evaluation: Recovery Time
	Evaluation: Throughput Vs. Recovery
	Takeaways
	Evaluation: Average Response Time

