
2015 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

OpenStack SwiftOnFile: User Identity for
Cross Protocol Access Demystified

Dean Hildebrand, Sasikanth Eda
Sandeep Patil, Bill Owen

IBM

2015 Storage Developer Conference. © IBM. All Rights Reserved.

Overview

2

OpenStack Swift Architecture

Swift-on-File Architecture

Spectrum Scale for Object Storage Architecture

File and Object Use Cases

OpenStack Swift ACL Vs. File ACL semantics

Modes to Support Compatibility
 Non-Unified Identity Between Object and File Interface

 Unified Identity Between Object and File Interface

Implementation approaches

2015 Storage Developer Conference. © IBM. All Rights Reserved.

3

OpenStack Swift is a highly available, distributed, eventually
consistent object/blob store[1].

[1] http://docs.openstack.org/developer/swift/

OpenStack Swift Architecture: Overview

• Wide range of usecases including web / mobile applications,
backups, active archiving

• One of 3 OpenStack storage services (Cinder block & Manila file)
• 100% python
• 35 kloc with over 70 kloc more in unit, function & EI test code
• Vibrant community, top contributing companies for Juno

include:
• SwiftStack, Rackspace, Redhat, HP, Intel, IBM, Box

4

Multi-tenancy

ACLs
Role-based Auth

HTTP/HTTPS

Geo-replication
High-Availability
Flat namespace

Storage automation

 Cost Savings through
simplified

management and use
of cheapest and
densest storage

Mac/Windows/Linux
Swift and S3 API

support
SDKs

User-defined metadata

Extensible Middleware
Versioning

Quotas
Expiration

Rate Limiting
Rolling upgrades

OpenStack Swift Features

4

2015 Storage Developer Conference. © IBM. All Rights Reserved.

OpenStack Swift Architecture: Overview

5

object
ring

Proxy Tier Traditional Swift
Storage Policy

Orphaned Storage nodes

Swift storage path:

-rwxr-xr-x 1 swift swift 29 Aug 22 09:25
/mnt/sdb1/2/node/sdb2/objects/981/f79/
d7b843bf79/1401254393.89313.data

User request -> Proxy tier -> Storage policy -> Ring -> storage location / path

Swift user

2015 Storage Developer Conference. © IBM. All Rights Reserved.

File Access to Objects Use Cases

6

1. Use file API as transition to object API
2. Create and Share

• Create data via file interface and share globally using object interface
• Example use cases include HPC, video, legacy API access to objects

3. Sync/Archive and Analyze
• Running Analytics directly through Swift/S3 API limits functionality
• While HDFS connectors exist for Swift/S3, they have

• Limited functionality since Hive and HBase (among others) are not supported
due to file ‘append’ requirement

• Poor performance due to loss of data location on writes, load imbalances etc.

4. Simplified management plane
• Manage file and object within single system

2015 Storage Developer Conference. © IBM. All Rights Reserved.

OpenStack Swift Architecture: Problem
Not Designed for File Access to Objects

7

object
ring

Proxy Tier Traditional Swift
Storage Policy

Orphaned Storage nodes

Swift user N
AS

 G
W

• Poor performance due to inefficient NAS “copy
and change” gateways

• Users mistakenly think they can do POSIX

2015 Storage Developer Conference. © IBM. All Rights Reserved.

Swift-on-File Architecture: Overview

8

 Swift Object Server implementation (Diskfile) [2]

• Data can be stored and retrieved through Swift and S3 and from NAS

 Enabled as a Swift Storage Policy

 Stores objects on any scale-out file system

• Stores objects once in scale-out file system

• Leverages Scale-out File System data protection

 Stores objects following the same path as the object's URL

 [2] https://github.com/stackforge/swiftonfile/blob/master/README.md#swift-on-file

2015 Storage Developer Conference. © IBM. All Rights Reserved.

Swift-on-File Architecture: Overview

9

Object-1
ring

Proxy Tier

Swift on File
Storage policy

SwiftOnFile storage path:

-rwxr-xr-x 1 swift swift 29 Aug 22 09:25
/mnt/swiftonfile/cont/obj1

User request -> Proxy tier -> Swift on File policy -> Swift on File Ring -> storage location / path

Path accessible via
NFS / CIFS / POSIX

Swift user Sc
al

e-
ou

t F
ile

 S
ys

te
m

2015 Storage Developer Conference. © IBM. All Rights Reserved.

Swift-on-File Architecture: Overview

This object:

http://swift.example.com/v1/acct/cont/obj

was stored with Swift here:
/mnt/sdb1/2/node/sdb2/objects/981/f79/f566bd022b9285b05e665fd7

b843bf79/1401254393.89313.data

But is now stored with SwiftonFile here:
/mnt/scaleoutFS/acct/cont/obj

10

http://swift.example.com/v1/acct/cont/obj

2015 Storage Developer Conference. © IBM. All Rights Reserved.

Co-Existence of Traditional and Swift-
On-File Object Placement

Object
ring

Object-1
ring

Proxy Tier

Traditional Swift
Storage policy

Swift on File
Storage policy

Swift storage path:

-rwxr-xr-x 1 swift swift 29 Aug 22 09:25
/mnt/sdb1/2/node/sdb2/objects/981/f79/
d7b843bf79/1401254393.89313.data

Not useful for
Analytic / File

workloads

SwiftOnFile storage path:

-rwxr-xr-x 1 swift swift 29 Aug 22 09:25
/mnt/swiftonfile/container/object1

Appropriate for
Analytic / File

workloads Swift user

Sc
al

e-
ou

t F
ile

 S
ys

te
m

11

2015 Storage Developer Conference. © IBM. All Rights Reserved.

Swift-on-File Usecase 1:
Video Capture and Analysis

12

Production
Location-1 / Camera-1

Production
Location-2 / Camera-2

Feed from cameras
to Object storage

HTTP
(Object PUT)

IBM Spectrum Scale (GPFS)

Swift on
File

Interface

NFS / SMB / POSIX Path

/cont1/obj1
/cont2/obj8

Existing video
library

Legacy Application

Share
results to

next
workflow

component (Ex: Video transcode,
Post-production etc.)

2015 Storage Developer Conference. © IBM. All Rights Reserved.

Swift-on-File Usecase 2:
Secure Analytics (End-to-End Life Cycle Management)

Guest Scientist-1
Organization-1

NFS / SMB
Storage

• On-premise storage
• Experiment raw data

IBM Spectrum Scale (GPFS)

Tape

Device

NFS / SMB Path

/data1/data0/file
/data4/file6

/data5/file11
/data36/file800

Analytics Platform

SSD SAS SATA
Intelligent Life cycle Management

Results
Sync back
results to
respective
account
/ devices

Account

Account

Objectification

Results

Guest Scientist-N
Organization-N

NFS / SMB
Storage

• On-premise storage
• Experiment raw data Device

Spectrum Scale for Object Storage

• Combine strengths of Spectrum
Scale and OpenStack Swift

• Eliminate data migration through
native File and Object integration
• POSIX/NFS/SMB/S3/Swift

• High performance and scalability
• Authentication integration (LDAP/AD)
• Data protection

• Snapshots, Backup, Disaster Recovery

• Encryption
• Compression
• Integrated or software-only solutions
• External storage integration

• TSM, LTFS, Optical

14

Spectrum Scale

NFS SMB POSIX

SSD Fast
Disk

Slow
Disk

Tape

Swift/S3 HDFS

14

Spectrum Scale for Object Storage
Detailed Architecture

15

• Run all Swift and Scale processes on all front-end

object servers

• Front-end servers access data directly from storage

system

• Objects are erasure coded on storage cluster using

Spectrum Scale Native RAID

• Use Swift policies to map containers to Spectrum

Scale Filesets with specific features e.g. encryption,

compression.

Proxy
Service

HTTP Swift/S3
Requests

Front-end
Object
Servers

Load Balancer

Storage
Network

.. Object
Service

Scale

SSD Fast
Disk

Slow
Disk

Tape

Keystone
Authentication

Service

Swift Services

Proxy
Service
Object
Service

Scale

Additional
Services in

Cluster

Memcached

15

2015 Storage Developer Conference. © IBM. All Rights Reserved.

OpenStack Swift ACL Semantics

16

 Swift ACL enables owner to set READ/WRITE access rights
 ACL’s are set and stored at container level (db)
 SWIFT ACL’s are not associated with the user’s User ID or Group ID, unlike the File world
 Controllable via headers

• X-Container-Read, X-Container-Write, X-Remove-Container-Read, X-Remove-Controllable-Write

Example (Read ACL):

$ swift stat container1
Account: AUTH_test
Container: container1
Objects: 17
Bytes: 29
Read ACL: test:tester2
Write ACL:
Sync To:
Sync Key:
Accept-Ranges: bytes
X-Storage-Policy: SwiftOnFile
X-Timestamp: 1440323340.30419
X-Trans-Id: txd285be9a47d940018e1fd-0055e26f81

Example (Write ACL):

$ swift stat container2
Account: AUTH_test
Container: container2
Objects: 9
Bytes: 261
Read ACL:
Write ACL: test:tester2
Sync To:
Sync Key:
Accept-Ranges: bytes
X-Storage-Policy: SwiftOnFile
X-Timestamp: 1439524393.73931
X-Trans-Id: tx6e2d8962e3e5431bbf7e6-0055cdf823

File ACL Semantics

2015 Storage Developer Conference. © IBM. All Rights Reserved.

17

In file world, there exits predominantly two kinds of ACL support;
POSIX ACLs - Associated with three sets of permissions that define access for the owner, the owning

group, and for others. Each set may contain Read (r), Write (w), and Execute (x) permissions

NFSv4 ACLs - Provides finer granularity than typical POSIX read/write/execute permissions and are

similar to SMB ACLs.

Both these ACL’s are based on User’s User ID and Group ID
• Other features that are tied with User ID properties include Quota, Backup, ILM functionalities.

In contrast to Object ACL’s, File ACL’s are:
Granular and comprehensive

Supports Inheritance (file inherits its parent directory permissions at the time of creation)

ACL’s can be set at both file as well as directory level

2015 Storage Developer Conference. © IBM. All Rights Reserved.

18

In order to achieve compatibility, the first step is to provide an
ability to have File User ID mapping with the SWIFT users.

Two proposed modes:
Mode 1: Non-Unified Identity

Mode 2: Unified Identity

Modes to Support Compatibility

Mode 1:
Non-Unified Identity Between Object and File

2015 Storage Developer Conference. © IBM. All Rights Reserved.

19

IBM Spectrum Scale

AD / LADP

AD / LDAP

Object Users

Object Access File Access

SwiftOnFile
device

File
Authentication

Object
Authentication

via keystone

POSIX

NFS / CIFS

Application running
analytics on Object Data

For this mode, if the auth server is AD/LDAP,
 it can be same or different

• Data created via object API will be available for application via file API using;
• Root
• Newly defined special user
• User given explicit ACLs

• Data created via file API will be accessible via object API
• Must elevate ‘swift’ user permissions

Mode 1:
Non-Unified Identity Between Object and File

2015 Storage Developer Conference. © IBM. All Rights Reserved.

20

 Object authentication setup is independent of File Authentication setup

• End user can make use the common authentication server incase of AD/LDAP

 Data created by Object API owned by “swift” user or must have full access to “swift” user data

 Application processing object data from file API needs the required file ACL to access the data

 File access should ensure that object data always retains full access to “swift” user (can be

achieved using DAC_OVERRIDE CAPABILITIES).

OpenStack SWIFT
Storage Unit Keystone user

(John)

$ mmgetacl/swiftonfile/container1/obj1
#owner:swift
#group:swift

Object user
PUT/GET request

$ mmgetacl/swiftonfile/container1/obj2
#owner:root
#group:root

(Object PUT)

(File write via POSIX if written by root) Elevated ‘swift’ user permissions

2015 Storage Developer Conference. © IBM. All Rights Reserved.

Mode 2:
Unified Identity Between Object and File

21

File
Authentication

Object Access File Access

SwiftOnFile
device

Object
Authentication

via keystone

POSIX

NFS / CIFS

Common AD/LDAP

 Common set of Object and File users using same directory service (AD+RFC 2307 or LDAP)

 Objects created using Swift API will be owned by the user performing the Object operation (PUT)
• Design Decision: If object already exists, existing ownership of File will be retained

IBM Spectrum Scale

Unified Identity Between Object and File

2015 Storage Developer Conference. © IBM. All Rights Reserved.

22

OpenStack SWIFT
Storage Unit

Keystone user
(John)

$ mmgetacl/swiftonfile/container1/obj1
#owner:john
#group:john
user::rw-c
group::----
other::----
mask::rwxc

Object user
PUT/GET request

Design Decision (Authorization):
• Object access will follow Object ACL semantics
• File access will follow File ACL semantics

Retaining ACL and XATTR
• If an object update is performed then existing “file ACL” and “XATTR” will be retained

For an object update operation
 No explicit “file ACL” will be set for that user

For initial PUT operation of an object over a nested directory
 Object owned by user but no explicit ACL will be set for that user over the nested directories

Quick Swift Terminology Aside

2015 Storage Developer Conference. © IBM. All Rights Reserved.

23

Middleware[3] is used to add additional functionality to Proxy,
Object, and Container/Account WSGI servers
 Inject code on both the request and response paths
 Easy way to customize a Swift deployment
 Numerous supported Middleware features as well as several other

middleware modules available
 E.g., Swift3, Rate Limiting

Diskfile[4] forms a disk abstraction layer for the object server

 Customizes the API and layout of how objects are stored
 Example APIs: POSIX, Kinetic
 Example layout: Standard Swift, Swift on File

[3] http://docs.openstack.org/developer/swift/development_ondisk_backends.html

[4] http://docs.openstack.org/developer/swift/development_middleware.html

Accessing Objects via File without Ownership:
Implementation

2015 Storage Developer Conference. © IBM. All Rights Reserved.

24

1. Proxy Server Middleware
• Collect username from request (or obtain it using Auth token) and pass to object server

2. Object Server DiskFile module
• Perform “ACL inheritance / append” operation on object with obtained username

[3] http://docs.openstack.org/developer/swift/development_ondisk_backends.html

[4] http://docs.openstack.org/developer/swift/development_middleware.html

IBM Spectrum Scale (GPFS Filesystem)

Traditional Swift Fileset Swift-on-File Fileset

Object rings Obj.ring

PUT
operation

Proxy Server

Storage Policy

Obj1.ring

Object-1 Server

Object Bob

PUT

Object
COMMIT
success

1. Obtain current ACL template
2. Append “mask::rwcx\nuser:bob:rwxc”
3. Apply new ACL template

Proposed Object server
Middleware Object Server

$ mmgetacl/sof/container1/obj1
#owner:swift
#group:swift
user::rw-c
group::----
other::----
mask::rwxc
user:bob:rwxc

 $ mmgetacl /objects/c24/18.72.data
#owner:swift
#group:swift
user::rw-c
group::----
other::----

Accessing Objects via File without Ownership:
Architecture

2015 Storage Developer Conference. © IBM. All Rights Reserved.

25

IBM Spectrum Scale

2015 Storage Developer Conference. © IBM. All Rights Reserved.

26

1. Elevate permissions to user configured with Swift
• Typically “swift” user

2. Proxy Server Middleware
• Collect username from request (or obtain it using Auth token) and

pass it to object server

3. Object Server DiskFile module
• Perform “chown” operation on object with the obtained username

Accessing Objects via File WITH Ownership
Implementation

IBM Spectrum Scale (GPFS Filesystem)

Traditional Swift Fileset Swift-on-File Fileset

Object rings Obj.ring

PUT
operation

Proxy Server

Storage Policy

Obj1.ring

Object-1 Server

Object

PUT

Object
COMMIT
success

1. Obtain current user
2. Perform chown operation using obtained

user

Proposed Object server
Middleware

Object Server

$ mmgetacl/sof/container1/obj1
#owner:bob
#group:bob
user::rw-c
group::----
other::----

 $ mmgetacl /objects/c24/18.72.data
#owner:swift
#group:swift
user::rw-c
group::----
other::----

Accessing Objects via File WITH Ownership
Architecture

2015 Storage Developer Conference. © IBM. All Rights Reserved.

27

Bob

Elevated “swift” user permissions

IBM Spectrum Scale

IBM Spectrum Scale

• Avoid vendor lock-in with true Software
Defined Storage and Open Standards

• Seamless performance & capacity scaling
• Automate data management at scale
• Enable global collaboration

Data management at scale OpenStack and Spectrum Scale
helps clients manage data at scale

Business: I need virtually
unlimited storage

Operations: I need a flexible
infrastructure that supports
both object and file based
storage

Operations: I need to minimize
the time it takes to perform
common storage management
tasks

Collaboration: I need to share
data between people,
departments and sites with low
latency.

A single data plane that
supports Cinder,
Glance, Swift, Manila as
well as NFS, et. al.

A fully automated
policy based data
placement and
migration tool

An open & scalable
cloud platform

Sharing with a variety
of WAN caching
modes

Results

• Converge File and Object based storage under one roof

• Employ enterprise features to protect data, e.g. Snapshots,
Backup, and Disaster Recovery

• Support native file, block and object sharing to data [coming
in 2015]

Spectrum Scale

NFS

SMB POSIX

SSD Fast
Disk

Slow
Disk

Tape

Swift

HDFS

Cinder

Glance Manila

28

Thank you

2015 Storage Developer Conference. © IBM. All Rights Reserved.

	OpenStack SwiftOnFile: User Identity for Cross Protocol Access Demystified
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Spectrum Scale for Object Storage
	Spectrum Scale for Object Storage�Detailed Architecture
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	IBM Spectrum Scale
	Thank you

