Network Bound Encryption for Data-at-Rest Protection

Nathaniel McCallum, Principal Software Engineer Red Hat, Inc.

Procurement

Disk Life Cycle (Third Parties)

Disk Life Cycle (Third Parties; Threat Models)

Disk Life Cycle (Third Parties; Threat Models)

Disk Life Cycle (Third Parties; Threat Models)

Security Threats and Mitigation

- Provisioning:
 - Firmware Attacks Flash Firmware
 - Code Injection Format (Restore)
- Encryption:
 - Passive Snooping
 - Problem: Key Management?

Key Usage Overview: Symmetric Encryption

Disk Encryption Key

Key Encryption Key

Common Technique #1: Shared KEKs

Disk Encryption Key

Key Encryption Key = "correct horse battery staple"

Common Technique #1: Shared KEKs

Co	DNS
ocking	Manual Rotation
/s. Scalability	No Access Control
o Ex-Employees	Vulnerable to Social Hackin

Common Technique #2: KEK Escrow / Retrieval

Common Technique #2: KEK Escrow / Retrieval

Pros		DNS
Key Separation	No Offline Escrow	Manual Rotation (or CRL)
Automatic Unlocking	Key First, Disk Later	Requires Authentication
Access Control	"Key in Tunnel" Design	Stateful Server
Auditing	(Usually) No Early Boot	

Can we use asymmetric crypto to improve the situation?

	OS	Cons
Key Separation	No Key First, Disk Later	"Key in Tunnel" Design
Automatic Unlocking	No Authentication Required	Manual Rotation (or CRL)
Offline Escrow		Limited Access Control
Early Boot		Limited Auditing
Stateless Server		Difficult to Configure (X.509

- Most major drawbacks relate to the use of X.509
- Can we hide key contents from the Decryption Server?
- Can we avoid TLS?

Can we shrink implementation requirements for embedded use?

- Most major drawbacks relate to the use of X.509
- Can we hide key contents from the Decryption Server?
- Can we avoid TLS?

Can we shrink implementation requirements for embedded use?

New Technique #2: McCallum-Relyea Exchange

Elgamal Encryption

Group Parameters: p, g

Encryption

Step	Client	Server	Step	Client	Server
1		$B \in_R [1, p-1]$	1	a,k	\longrightarrow
2		$b = g^B$	2		K = k
3	<	-b		•	·
4	$K \in_R \mathbb{Z}_p$				
5	$A \in_R [1, p-1]$				
6	$a = g^A, k = Kb^A$				

Decryption

McCallum Opaque Decryption

Encryption

Step	Client	Server
1		$B \in_R [1, p -$
2		b =
3	<	- <i>b</i>
4	$K \in_R \mathbb{Z}_p$	
5	$A \in_R [1, p-1]$	
6	$a = g^A, k = Kb^A$	

Group Parameters: p, g

McCallum-Relyea Exchange

Encryption

Step	Client	Server	Step	Client	Server
1		$B \in_R [1, p-1]$	1	$X \in_R [1, p-1]$	
2		$b = g^B$	2	$x = ag^X$	
3	<	- <i>b</i>	3	x ·	\rightarrow
4	$K \in_R \mathbb{Z}_p$		4		x'
5	$A \in_R [1, p-1]$		5	<	-x'
6	$a = g^A, k = Kb^A$		6	$K = k \div (x' \div b^X)$	

Group Parameters: p, g

Decryption

New Technique #2: McCallum-Relyea Exchange

New Technique #2: McCallum-Relyea Exchange

	Pros	Cons
Key Separation	No Key First, Disk Later	Limited Access Control
Automatic Unlocking	No Authentication Required	Limited Auditing
Offline Escrow	"Key in Tunnel" Design	
Early Boot	Automatic Rotation	
Stateless Server		

New Technique #3: Push McCallum-Relyea Exchange

New Technique #3: Push McCallum-Relyea Exchange

P	ros
Key Separation	No Key First
Automatic Unlocking	No Authentic
Offline Escrow	"Key in Tunr
Early Boot	Automatic R
Stateless Server	Access Con

- t, Disk Later
- cation Required
- nel" Design
- otation
- trol, Auditing

Cons

Upstream Project: Deo

- https://github.com/npmccallum/deo
- $\Delta \epsilon o$: to bind
- Project Status: Unstable

 - Techniques #2 and #3 in development
 - Early boot (LUKS) implemented
 - Support for ext4 crypto in planning
- Contributions welcome!

Technique #1 implemented (X.509; deprecated – don't use)

$_{\mathbb{R}}$

