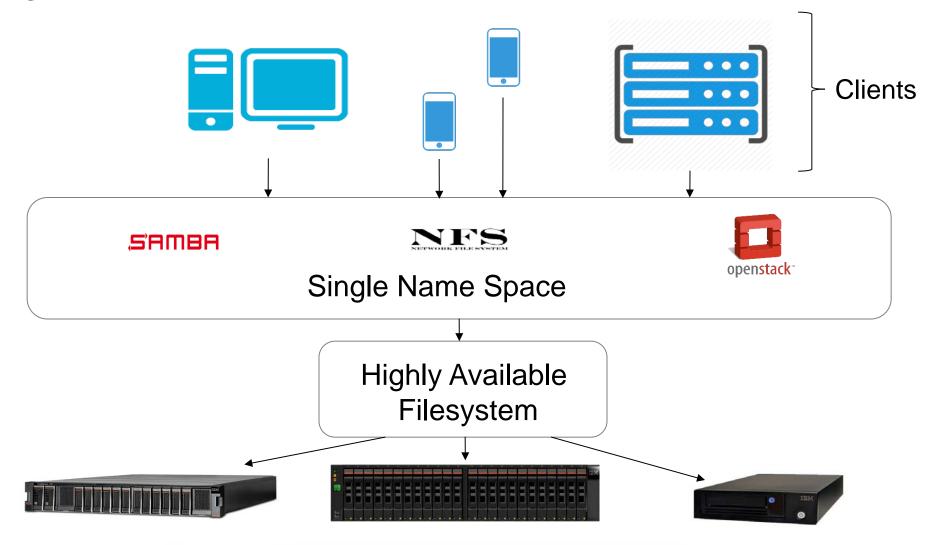


System Verification At Scale: Thousands of Users Do you need to test with them or not?


Steven Buller
Julian Cachua
Christina Lara
IBM

AGENDA

- WHY thousands of users
- HOW to test & simulate at a scaled level
- RESULTS from testing at scale
- FUTURE test improvements

System Overview

Complex interactions between system components

- Robustness of the system being able to handle thousands of clients/connections
- Required interaction between multiple nodes and software services
 - Health monitoring sensors to detect node status and properly handle failovers
 - □ IP distribution mechanism to evenly re-distribute IPs
- Multiple nodes can have direct read/write access to the same data
 - R/W conflicts must be avoided
 - Diverse protocols and the underlying filesystem must be able to access and modify data in a coordinated way

Why thousands of users?

- Diverse environments requiring thousands of clients usage
 - NAS servers handling thousands of clients are becoming a common requirement in diverse environments ranging from public school systems to cancer research.
- Simulation of thousands of users prior to customer use
 - The need to simulate tens of thousands of active users on SMB, NFS, and Object protocols is the first step to finding issues before the customer does.

Field problems that drove scalability testing:

- "Critical Situation" events being seen due to large number of users/clients
 - Examples of critical events:
 - □ SMB connection issues
 - Cleanup after connections are closed
 - □ Resource contention related to high number of connections
 - Database lock conflicts
 - □ Deadlocks during concurrent system software upgrades
 - IP management failures

Actual field scalability issues:

- A public school system with 30,000+ students
 - First week of school, parents are logging in to see what Jack and Jill are going to have for lunch...
 - Day 2: Customer encountered a bug with CTDB not deleting closed connections.
 - □ Which led to >90K entries, which maxed out a DB and led to an outage.
 - RESULT> Drove investment to test with thousands of connections.
- Large research consortium:
 - One researcher was deleting a PIT (Point-In-Time copy) while another user was searching that copy -> deadlocked.
 - Frequent PITs of bulk data starved other system resources.
 - RESULT> Creation of a Education Workload on a dedicated test stand to replicate the filesystem directory structure and function frequency characteristics.

How Did We Test Thousands of Users?

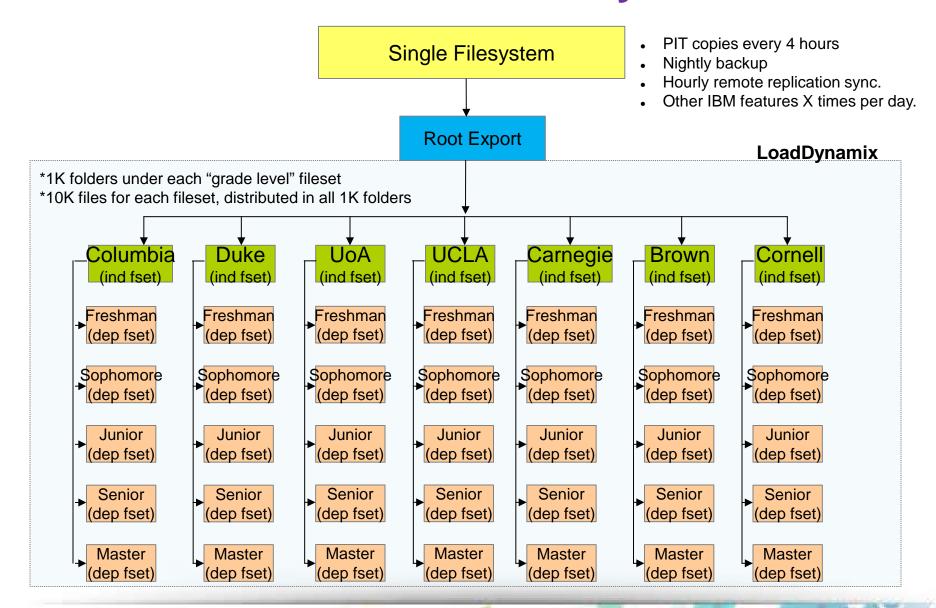
How: Testing Solutions

- Tools
- Examples of tests
- Examples of issues found at scale

Testing Solution: Tools

- Scalability with existing hardware
 - 300-500 physical clients, even multiplied by VM's, is not sufficient.
 - More physical clients was cost prohibitive.
- Introduction of LoadDynamix* tools
 - Simulate connections from multiple IPs and MAC addresses.
 - Able to coordinate data access among diverse clients:
 - Create by ClientA on NodeY with SMB.
 - Read by ClientB on NodeX with NFS.
 - Delete by ClientC on NodeZ.

* Disclaimer - This is not an endorsement for any one vendor



Testing Solutions: Targeted Workloads

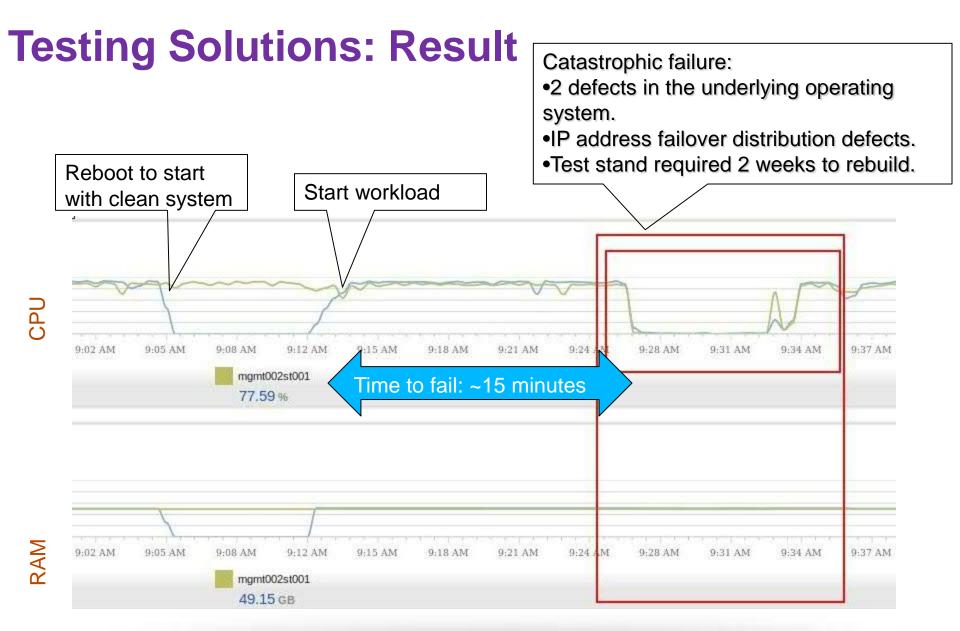
- Industry Representative Workloads
 - Bio-Genetics
 - □ SMB Genomic sequencers write data to be analyzed by NFS apps reads.
 - Technology
 - □ EDA tools generate "kabillions" (lots) of tiny temp files, access contention.
 - Education
 - Tens of thousands of subdirectories of varying depths.
- Workloads differentiated by:
 - Read/Write %
 - File Sizes
 - Multi-protocol & Cross-protocol interaction
 - Quantities of Directories & Connections
 - Hardware configurations
 - □ Size of cluster-number of nodes
 - □ Amount of space (inodes in the filesystem) used.

Education Workload: Directory Structure

Testing Solution: Focused Test Coverage

- CTDB / Samba Connection Management
 - The CTDB testplan used to cover un-exercised areas
 - ☐ High # of connections / open files
 - Multi-node file access
 - Multiple sub-nets
 - □ Failover & Recovery
 - □ Vacuuming (expensive process)
 - CTDB records stress
 - Frozen DBs
 - Network Operations IP banning & modifications

Testing Solution: Additional Function Interaction

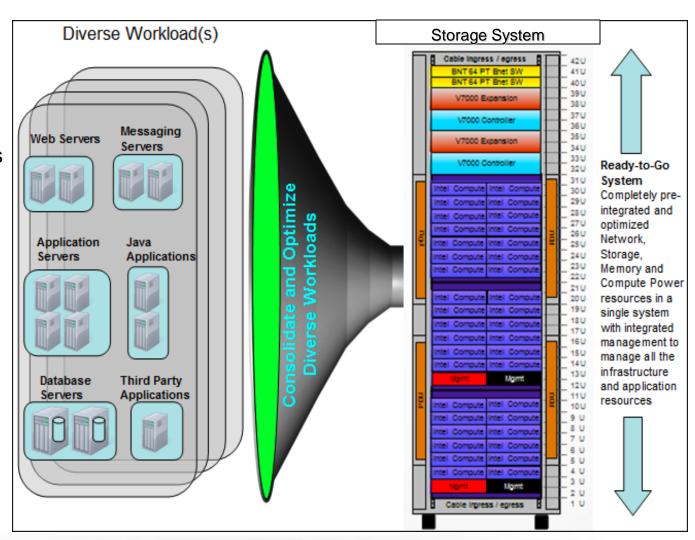

- IBM Function Integration
 - Point In Time (PIT) Copy
 - Ramp up frequency of Creation/Deletion and overlap timing to create contention
 - Backup/Archiving
 - MacOS SMB clients "surfing" for a file would trigger mass file recalls from off-line copies.
 - Failovers
 - Move service to another node in the cluster before client time-out expires.

Testing Solution: Issues Found at Scale

- "Thundering Herd" lock contention resulting in mutex changes (multiple connections to a single file)
 - □ See: Samba Mutex Exchange Presentation
- CTDB Vacuuming/Recovery Master election
 - 2500 Connections PER NODE
 - Had to increase minimum recommended memory to solve.
- "High" number of IP addresses:
 - Targeting 900 IP addresses resulted in a loss of network access that persisted after cluster reboot.
 - Had to delete IP's out of CTDB to recover.
- Memory Leaks

Testing Solution: Results

- Hardware Boundaries
 - Defined memory & CPU minimum requirements
 - □ Even virtualized resources are not limitless.
- Published Limitations & Best Practices
 - Set appropriate expectations
 - Guidance for sales force in sizing systems.
- Redesign of Locking Mechanism between Samba & CTDB
 - □ F-CTRL to Mutex
- Introduction of defensive Spectrum Scale <u>deadlock monitoring</u> as a new product feature.
 - Proactive monitoring of conditions that could lead to an outage.


Introduction to Workloads

- Workloads to simulate virtual clients (ie: LoadDynamix)
 - Characteristics
 - Connections
- Workloads to simulate industry
 - Bio-Genetics
 - Technology
 - Education
- Workload Analysis Flow

Workloads Paradigm

- ■Each Industry has different requirements.
- ■Industry characteristics can affect different elements of the storage system.
- ■Standard hardware storage systems must be able to manage different Industries workloads

Differences between workloads

Industry	NFS		Cross Protocol	Locking Nested Dire			Dirs Number		Read Sizes		Write Sizes		Read / Write		NFS	SMB		160	A 3	- 33		18	
		SMB		NFS (<u>only</u> NFSv4)			SMB	153		NFS		NFS	SMB	NFS	A CONTRACTOR	creates	creates	get file attr	set file attr	ren	del	dir creates	dir de
Technology	60%	40%	NO	20%	30%	1	10	0.2/g onn	0.2/ <u>co</u> nn	33% <1K	33% <1K (1M files)	33% < 512K (50% COW) 90% file \$20\$ 50% same offset		50/50	50/50	0.3/sec/ conn	0.3/sec/ conn	20X /	0.05X / file	5%	15%	2/sec	2/5
	NFSv4 50% NFSv3 50%	SMB1 10% SMB2 40% SMB2.1 50%		Create: unchecked 5%, guarded 55%, exclusive 40%						33% 32K	33% 32K (10M files)	33% 32K (25% COW)	33% 32K (25% COW)										
										33% 1M	33% 1M (100M files)	33% 1M (20% COW)	33% 1M (20% COW)										

<Protocol & Version>_Locking<Characteristics>

orotocol & version>_Main_<write size>K

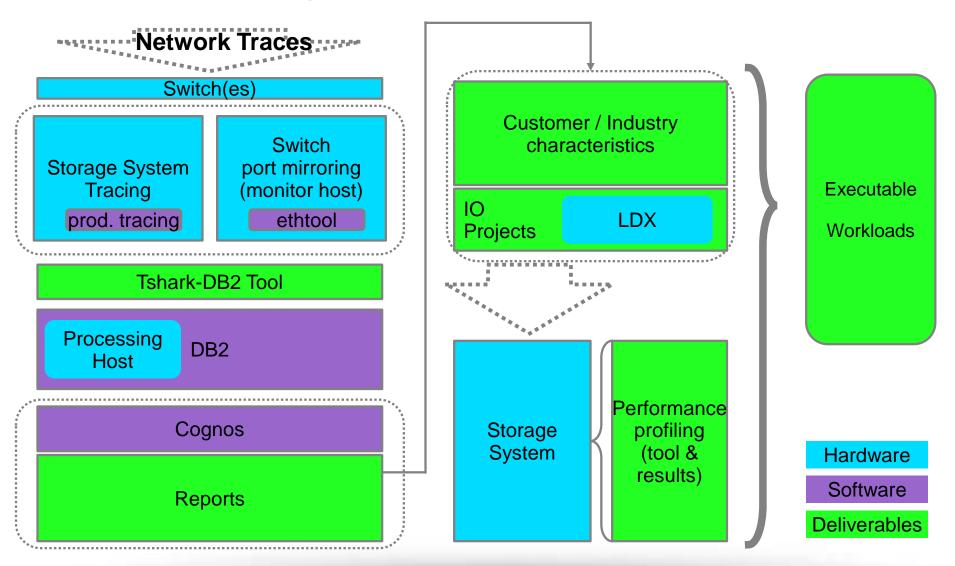
orotocol & version>_Directory_Metadata

In all scenarios

Industry	NFS	SMB	Cross Protocol	Locking		Nested Dirs		Dirs Number		Read Sizes		Write Sizes		Read / Write		NFS	SMB						
				NFS (only NFSv4)	SMB	NFS	SMB	NFS	SMB	NFS	SMB	NFS	SMB	NFS			creates	get file attr	set file attr	ren	del	dir creates	dir del
												50% < 1K	50% < 1K										
										50%	50%	(50%	(50%			0.3/sec	0.3/sec	10X /	0.1X /				
	10%	90%	NO	20%	20%	5	10	1/conn	0.5/conn	<1K	<1K	COW)	COW)	50/50	50/50	/conn	/conn	file	file	10%	10%	0.5/conn	10%
		SMB1 10%										50% 1K -	50% 1K -								1111		
	NFSv4 50%	SMB2 40%								50% 1K	50% 1K	10M (50%	10M (50%										
	NFSv3 50%	SMB2.1 50%								- 10M	- 10M	cow	cow)										

FUTURE: To Infinity and Beyond....

- ☐ Ultimate: tcpreplay *at scale*
 - Record a customer's traffic and play it back from thousands of clients
 - □Challenges:
 - Need to scrub/filter sensitive data (best not to capture it)
 - ☐ Huge capture sizes
 - Network replication
 - Still need documentation of the customers environment
 - □ Ex. Directory structure can not be reverse engineered from traces.



FUTURE: Near term (This side of Infinity)

- ☐ Realistic Intermediate step: Workload Analysis
 - Use Big Data Analytics to generate synthetic workloads based on trace characteristics.
 - □Solution:
 - 1. Gather traces & perform trace parsing
 - 2. Load parsed data into analytics tools to create views
 - 3. Develop workloads
 - Challenges:
 - Define indicators
 - Need for analytics tools
 - Needs pre-parsing of unstructured data
 - □ Trace gathering may impact performance

Workload Analysis Flow

Questions?

Acryonyms

- □ PIT (Point-In-Time copy)
- EDA (Electronic Design Automation)

