
Anu H Rao
Storage Software Product line Manager
Datacenter Group, Intel® Corp

Notices & Disclaimers
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult
other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit
http://www.intel.com/benchmarks .

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary.
You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more complete information visit http://www.intel.com/benchmarks .

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and
provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced
data are accurate.

© 2017 Intel Corporation.
Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

http://www.intel.com/
http://www.intel.com/

Latency (µs)

Technology claims are based on comparisons of latency, density and write cycling metrics amongst memory technologies recorded on published specifications of in-market memory products against internal Intel specifications.

0

25

50

75

100

125

150

175

200

10,000

HDD
+SAS/S

ATA

SSD
NAND
+SAS/S

ATA

SSD
NAND

+NVMe
™

SSD
optane™
+NVMe™

kernel driver overhead 1-8%

kernel driver Overhead <0.01%

kernel driver overhead 30%-50%

Drive Latency Controller Latency Driver Latency

The Challenge: Media Latency

Storage
Performance

Development
Kit

5

Scalable and Efficient Software Ingredients
• User space, lockless, polled-mode components
• Up to millions of IOPS per core
• Designed to extract maximum performance from non-

volatile media

Storage Reference Architecture
• Optimized for latest generation CPUs and SSDs
• Open source composable building blocks (BSD licensed)
• Available via SPDK.io
• Follow @SPDKProject on twitter for latest events and

activities

Architecture

Drivers

Storage
Services

Storage
Protocols

iSCSI
Target

NVMe-oF*
Target

SCSINVMe

NVMe Devices

Blobstore

NVMe-oF*

Initiator

Intel® QuickData
Technology Driver

Block Device Abstraction (bdev)

Ceph
RBD

Linux
AIO

Logical
Volumes3rd Party

NVMe

NVMe* PCIe
Driver

Released

New release 18.01

1H‘18

vhost-blk
Target

BlobFS

Integration

RocksDB

Ceph

Core

Application
Framework

GPT

PMDK
blk

virtio
scsi

QEMU

QoS

Linux nbd
RDMA

virtio
blk

vhost-scsi
Target

Virtio
• Paravirtualized driver specification

• Common mechanisms and layouts for
device discovery, I/O queues, etc.

• virtio device types include:
• virtio-net
• virtio-blk
• virtio-scsi
• virtio-gpu
• virtio-rng
• virtio-crypto

Hypervisor (i.e. QEMU/KVM)

Guest VM
(Linux*, Windows*, FreeBSD*, etc.)

virtio front-end drivers

virtio back-end drivers

device emulation

virtqueuevirtqueuevirtqueue

9

QEMU

Kernel

Guest VM

Guest kernel

Application

virtqueue

I/O Processing

AIO

QEMU VirtIO SCSI

10

1. Add IO to virtqueue

2. IO processed by QEMU

3. IO issued to kernel

4. Kernel pins memory

5. Device executes IO

6. Guest completion interrupt

QEMU VIRTIO

Vhost (KERNEL)

vhost target (kernel or userspace)

Vhost
• Separate process for I/O processing

• vhost protocol for communicating guest
VM parameters
• memory
• number of virtqueues
• virtqueue locations

Hypervisor (i.e. QEMU/KVM)

Guest VM
(Linux*, Windows*, FreeBSD*, etc.)

virtio front-end drivers

device emulation

virtio back-end drivers

virtqueuevirtqueuevirtqueue

vhostvhost

QEMU

Kernel

Guest VM

Guest kernel

Application

virtqueue

vhost-kernel AIO

Kernel VHOST

13

1. Add IO to virtqueue

2. Write virtio doorbell

3. Wake vhost kernel

4. Kernel pins memory

5. Device executes IO

6. Guest completion interrupt

kvm

QEMU VIRTIO

Vhost (KERNEL)

vhost (USERSPACE)

15

Host Memory

QEMU

Guest VM

virtio-scsi

Shared Guest VM
Memory

SPDK vhost

vhost DPDK vhost

virtio-scsi

virtqueuevirtqueuevirtqueue

eventfd

UNIX domain
socket

SPDK VHOST Architecture

QEMU

Kernel

Guest VM

Guest kernel

Application

virtqueue

SPDK Vhost

vhost i/o

SPDK VHOST

16

1. Add IO to virtqueue

2. Poll virtqueue

3. Device executes IO

4. Guest completion interrupt

kvm

Architecture

Drivers

Storage
Services

Storage
Protocols

iSCSI
Target

NVMe-oF*
Target

SCSI

vhost-scsi
Target

NVMe

NVMe Devices

Blobstore

NVMe-oF*

Initiator

Intel® QuickData
Technology Driver

Block Device Abstraction (bdev)

Ceph
RBD

Linux
AIO

Logical
Volumes3rd Party

NVMe

NVMe* PCIe
Driver

Released

New release 18.01

1H‘18

vhost-blk
Target

BlobFS

Integration

RocksDB

Ceph

Core

Application
Framework

GPT

PMDK
blk

virtio
scsi

QEMU

QoS

Linux nbd
RDMA

virtio
blk

Sharing SSDs in userspace

Typically not 1:1 VM to local attached NVMe SSD
§ otherwise just use PCI direct assignment

What about SR-IOV?
§ SR-IOV SSDs not prevalent yet

§ precludes features such as snapshots

What about LVM?
§ LVM depends on Linux kernel block layer and storage drivers (i.e. nvme)

§ SPDK wants to use userspace polled mode drivers

SPDK Blobstore and Logical Volumes!

SPDK vhost Performance

0

10

20

30

40

50

Linux QEMU SPDK

QD=1 Latency (in us)

System Configuration: 2S Intel® Xeon® Platinum 8180: 28C, E5-2699v3: 18C, 2.5GHz (HT off), Intel® Turbo Boost Technology enabled, 12x16GB DDR4 2133 MT/s, 1 DIMM per channel, Ubuntu* Server 16.04.2 LTS, 4.11 kernel, 23x Intel® P4800x Optane
SSD – 375GB, 1 SPDK lvolstore or LVM lvgroup per SSD, SPDK commit ID c5d8b108f22ab, 46 VMs (CentOS 3.10, 1vCPU, 2GB DRAM, 100GB logical volume), vhost dedicated to 10 cores
As measured by: fio 2.10.1 – Direct=Yes, 4KB random read I/O, Ramp Time=30s, Run Time=180s, Norandommap=1, I/O Engine = libaio, Numjobs=1
Legend: Linux: Kernel vhost-scsi QEMU: virtio-blk dataplane SPDK: Userspace vhost-scsi

SPDK up to 3x better efficiency and latency

48 VMs: vhost-scsi performance (SPDK vs. Kernel)
Intel Xeon Platinum 8180 Processor, 24x Intel P4800x 375GB
2 partitions per VM, 10 vhost I/O processing cores

1

11

2.86 2.77
3.4

9.23 8.98
9.49

0

1

2

3

4

5

6

7

8

9

10

4K 100% Read 4K 100% Write 4K 70%Read30%Write

IO
PS

 in
 M

ill
io

ns

vhost-kernel vhost-spdk

3.2x
• Aggregate IOPS across all 48x VMs

reported. All VMs on separate cores
than vhost-scsi cores.

• 10 vhost-scsi cores for I/O processing

• SPDK vhost-scsi up to 3.2x better with
4K 100% Random read I/Os

• Used cgroups to restrict kernel vhost-
scsi processes to 10 cores

System Configuration:Intel Xeon Platinum 8180 @ 2.5GHz. 56 physical cores 6x 16GB, 2667 DDR4, 6 memory Channels, SSD: Intel P4800x 375GB x24 drives, Bios: HT disabled, p-states enabled, turbo enabled, Ubuntu 16.04.1 LTS, 4.11.0 x86_64 kernel, 48
VMs, number of partition: 2, VM config : 1core 1GB memory, VM OS: fedora 25, blk-mq enabled, Software packages: Qemu-2.9, libvirt-3.0.0, spdk (3bfecec994), IO distribution: 10 vhost-cores for SPDK / Kernel. Rest 46 cores for QEMU using cgroups, FIO-
2.1.10 with SPDK plugin, io depth=1, 8, 32 numjobs=1, direct=1, block size 4k

VM Density: Rate Limiting 20K IOPS per VM
Intel Xeon Platinum 8180 Processor, 24x Intel P4800x 375GB
10 vhost-scsi cores

1

11

0

10

20

30

40

50

60

70

80

90

100

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

24 48 96

%
 C

PU
 U

til
iza

tio
n

(lo
w

er
 is

 b
et

te
r)

IO
PS

(h
ig

he
r i

s b
et

te
r)

No. of VMs

Kernel IOPS SPDK IOPS Kernel CPU Util. SPDK CPU Util.

• % CPU utilized shown from VM
side

• Each VM was running queue
depth=1, 4KB random read
workload

• Hyper threading enabled to allow
112 cores.

• Each VM rate limited to 20K IOPS
using cgroups

• SPDK able to scale to 96 VMs,
supporting 20K per VM. Kernel
scale till 48 VMs. Beyond 48
VMs, 10 vhost-cores seem
bottleneck

System Configuration:Intel Xeon Platinum 8180 @ 2.5GHz. 56 physical cores 6x 16GB, 2667 DDR4, 6 memory Channels, SSD: Intel P4800x 375GB x24 drives, Bios: HT disabled, p-states enabled, turbo enabled, Ubuntu 16.04.1 LTS,
4.11.0 x86_64 kernel, 48 VMs, number of partition: 2, VM config : 1core 1GB memory, VM OS: fedora 25, blk-mq enabled, Software packages: Qemu-2.9, libvirt-3.0.0, spdk (3bfecec994), IO distribution: 10 vhost-cores for SPDK /
Kernel. Rest 46 cores for QEMU using cgroups, FIO-2.1.10 with SPDK plugin, io depth=1, 8, 32 numjobs=1, direct=1, block size 4k

SPDK Vhost

BDAL
Logical

Vol

NVMe Driver
BDAL
NVMe
Bdev

VM

Intel® SSD for
Datacenter

VM EPHEMERAL STORAGE
• Increased efficiency yields

greater VM density

24

BDAL
Logical

Vol

VM

Intel® SSD for
Datacenter

SPDKSPDK Vhost

NVMe-oF
Initiator

BDAL
NVMe-oF

BD

VM

NVMe-oF
Target

VM Remote Storage
• Enable disaggregation and

migration of VMs using remote
storage

25

Ceph
Cluster

SPDK

Intel® SSD for
Datacenter

Ceph RBD
Driver

BDAL
Ceph
Bdev

SPDK VhostVM

VM CEph Storage
• Potential for innovation in data

services

• Cache

• Deduplication

26

For More information on SPDK

• Visit SPDK.io for tutorials and links to github, maillist, IRC channel and other
resources

• Follow @SPDKProject on twitter for latest events, blogs and other SPDK
community information and activities

Basic Architecture

Configure vhost-scsi

controller

§ JSON RPC

§ creates SPDK constructs for

vhost device and backing

storage

§ creates controller-specific

vhost domain socket

Logical Core

0

Logical Core

1

vhost-scsi ctrlr

NVMe SSD

scsi dev

scsi lun

bdev

nvme

/spdk/vhost.0

Basic Architecture

Launch VM

§ QEMU connects to domain

socket

SPDK

§ Assigns logical core

§ Starts vhost dev poller

§ Allocates NVMe queue pair

§ Starts NVMe poller

Logical Core

0

Logical Core

1

vhost-scsi ctrlr

NVMe SSD

scsi dev

scsi lun

bdev

nvme

/spdk/vhost.0

vhost-scsi

poller

VQVQVQ

QP

bdev-nvme

poller

VM

Basic Architecture

Repeat for additional
VMs
§ pollers spread across

available cores

Logical Core
0

Logical Core
1

vhost-scsi ctrlr

NVMe SSD

scsi dev

scsi lun

bdev
nvme

/spdk/vhost.0

vhost-scsi
poller

VQVQVQ

QP

bdev-nvme
poller

vhost-scsi
poller

bdev-nvme
poller

vhost-scsi
poller

bdev-nvme
poller

vhost-scsi
poller

bdev-nvme
poller

VM

Blobstore Design – Design Goals

• Minimalistic for targeted storage
use cases like Logical Volumes
and RocksDB

• Deliver only the basics to enable
another class of application

• Design for fast storage media

Blobstore Design – High Level

Application interacts with chunks of data called blobs
§ Mutable array of pages of data, accessible via ID

Asynchronous
§ No blocking, queuing or waiting

Fully parallel
§ No locks in IO path

Atomic metadata operations
§ Depends on SSD atomicity (i.e. NVMe)
§ 1+ 4KB metadata pages per blob

Logical Volumes

Blobstore plus:

§ UUID xattr for lvolstore, lvols

§ Friendly names

– lvol name unique within lvolstore

– lvolstore name unique within application

§ Future

– snapshots (requires blobstore support)

NVMe SSD

bdev

bdev

nvme

lvol

blobstore

lvolstore

...
bdev

lvol

Asynchronous Polling

Poller execution
§ Reactor on each core

§ Iterates through pollers round-
robin

§ vhost-scsi poller
– poll for new I/O requests
– submit to NVMe SSD

§ bdev-nvme poller
– poll for I/O completions
– complete to guest VM

Logical Core
0

Logical Core
1

vhost-scsi ctrlr

NVMe SSD

scsi dev

scsi lun

bdev
nvme

/spdk/vhost.0

vhost-scsi
poller

VQVQVQ

QP

bdev-nvme
poller

vhost-scsi
poller

bdev-nvme
poller

vhost-scsi
poller

bdev-nvme
poller

vhost-scsi
poller

bdev-nvme
poller

VM

