

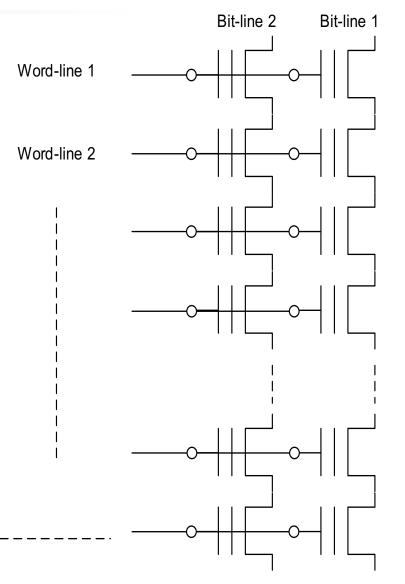
NAND Controller Reliability Challenges

Hanan Weingarten

February 27, 2018

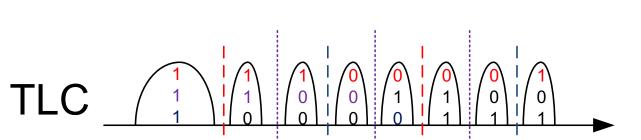
2018 Toshiba Memory America, Inc.

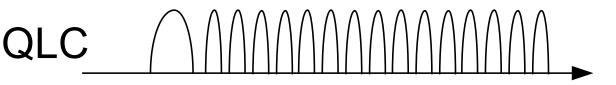
Agenda


- Introduction to NAND and 3D technology
- Reliability challenges
- Summary

Introduction to NAND and 3D technology (1)

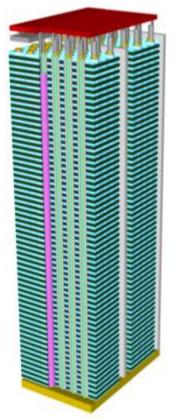
- NAND devices store information as charge in a transistor cell
- Transistor cells are chained together in a bit-line
 - Cell sensing:
 - Apply a threshold voltage V_{T} to a transistor cell and check for conductance
 - Other cells on bit line are set to pass state
- Block:
 - Many bit-lines are packed together to form a block
- Word-line / Page:
 - Corresponding transistors on block bit-lines form a word-line / page




Introduction to NAND and 3D technology (2)

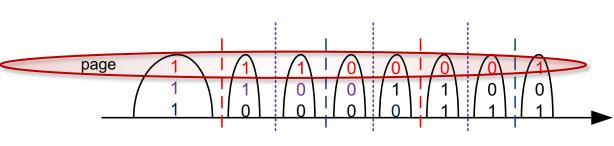
- More than a single bit may be stored in a cell
 - One of several charge levels is programmed into the cell
 - E.g., TLC (3 bits per cell) utilizes 8 charge levels
 - Programming is an analog process
 - Accuracy is a function of
 - Technology
 - Programing time
 - ...

Leading Innovation >>>


- Distribution of cell V_T s across a page
 - Read errors occur when lobe intersect
 - V_T threshold positioning is critical for reliability
 - Number of V_T thresholds determines read speed
- QLC (4 bits per cell) emerging:
 - Very dense application & low cost
 - Mostly read application
 - Higher probability of read errors

Introduction to NAND and 3D technology (3)

- Previous technology: NAND strings on planar (2D) silicon structures
- New technology: NAND strings on (3D) silicon structures
 Why 3D BiCS FLASH vs 2D NAND Floating Gate technology?
- Higher Capacity
 - Vertically stacked cell structure enables higher capacity in the same footprint
- Higher Endurance
 - Charge trap cell & memory hole structure increase endurance
- Higher Performance
 - Faster programming speed with 1-shot program called "Full Sequence"
 - Triple pages can be programed simultaneously with fewer steps
- Higher Power Efficiency
 - Triple pages can be programed with almost the same power consumption of a single page program


Introduction to NAND and 3D technology (4)

NAND organization:

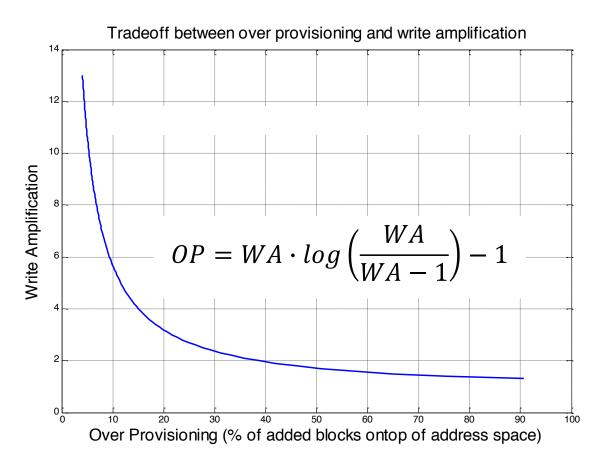
- Block:
 - Made of many bit-lines
- Word-line:
 - A set of all cells corresponding to one row across block bit-lines
- Page:

Leading Innovation >>>

- The set of bits corresponding to same bit level in word-line
- Atomic programming operation: page / Word-line programming
 - In 3D-TLC, atomic word-line programming (1-shot) enable faster programming
- Atomic read operation: Page read
- Atomic erase operation: Full block erase

Bit-line 2

Word-line


Word-line 2

Bit-line

Introduction to NAND and 3D technology (5)

• Memory management:

- Atomic erase of full block requires:
 - Flash Translation Layer (FTL)
 - Garbage collection
 - Over provisioning (OP)
 - Result:
 - Write amplification (WA)
 - One host page write => several page writes on the NAND
 - Function of OP

Introduction to NAND and 3D technology (6)

• NAND controller roles depending on application:

- Block / Segment access application:
 - Flash Translation Layer (FTL):
 - Translate host logical address to physical address on NAND
 - Memory Management / Garbage collection
 - Wear leveling

- ...

- Other applications (e.g. Open Channel)
 - No FTL
 - Optional: Bad block management

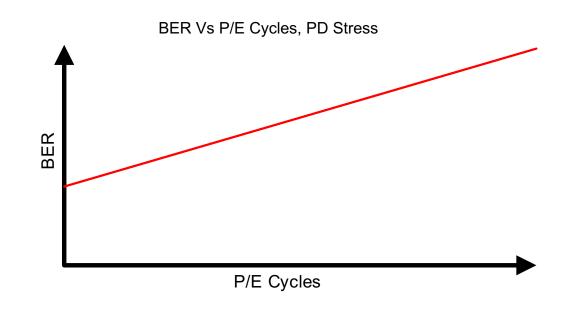
• ...

- All applications:
 - Error free NAND
 - All reliability issues handled by controller

Introduction to NAND and 3D technology (7)

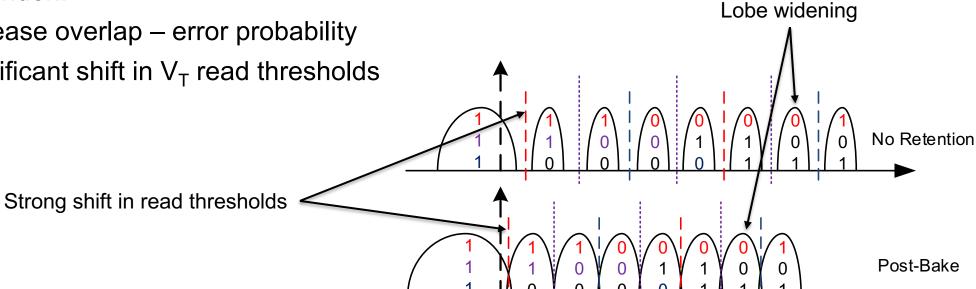
- NAND controller requirements & Challenges:
 - High throughputs
 - Low latency and high IOPs
 - Low power (embedded applications)
 - Low gate-count (embedded applications)
 - NAND controller must be adapted for all types of stresses to meet above requirements

• NAND controller tools:


- Powerful and unique ECC with hard / soft decoding, low gate count / power, RAID capabilities
- Unique DSP, utilizing machine learning to optimize NAND trim parameters with minimal overheads
- Specialized management and FTL to enable performance and reliability

Reliability Challenges (1)

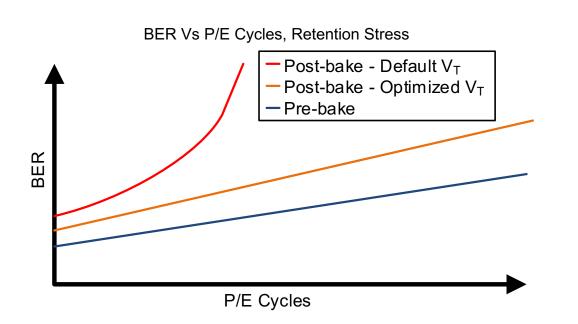
- NAND reliability deteriorates under different types of stresses
- Program Disturb (PD) stress:
 - NAND reliability deteriorates with Program Erase (P/E) cycles
 - Growing damage to NAND channel
 - Damage is significantly more noticeable when additional stress types are applied
 - Reliability is reflected in read Bit Error Rates (BER) as function of P/E cycles



Reliability Challenges (1)

Retention (1):

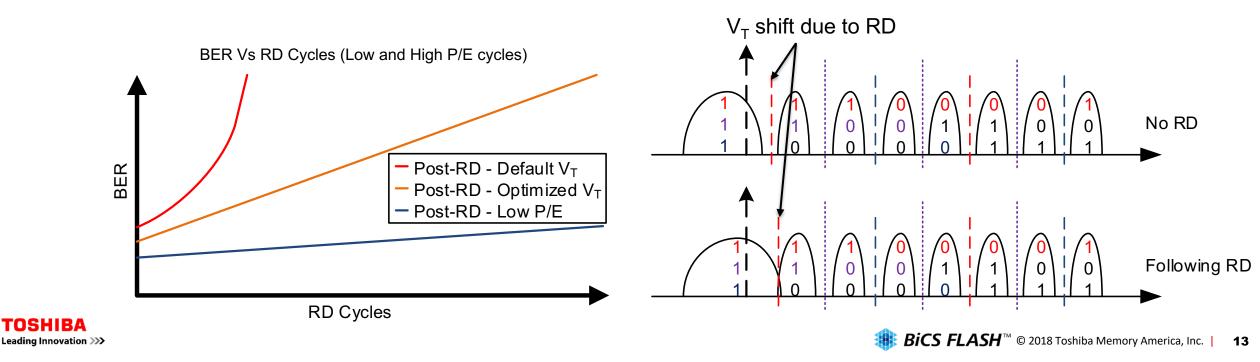
- A major source for reliability deterioration
- Much more significant following P/E cycles
- Distribution of cell V_T s across a page exhibit significant changes:
 - Increased charge loss
 - Due to channel damage during P/E cycles —
 - Lobes widen:
 - Increase overlap error probability
 - Significant shift in V_T read thresholds



Reliability Challenges (2)

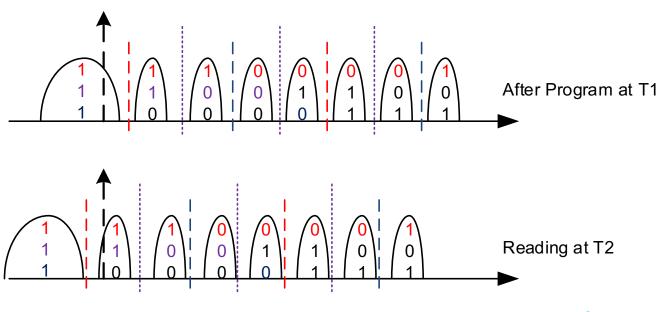
Retention (2)

- Retention is accelerated through oven bake
- Significant effect to V_T threshold adaptation
- NAND Controller must adapt V_T s:
 - Automatically
 - With marginal overheads
- NAND Controller must have improved ECC
 - Support higher BER following retention
 - Support "soft"-decoding



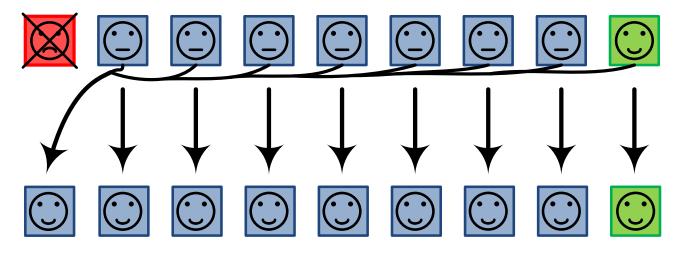
Reliability Challenges (3)

Read Disturb (RD) stress:


- Each read behaves as a weak programming operation
- Following RD
 - Significant V_T shift (opposite direction to retention)
 - Increased BER
- Similar NAND controller requirements for a different regime

Reliability Challenges (4)

Cross temperature:


- Temperature changes between programming and reading can affect NAND V_T distribution
- Some applications may have very large temperature differences
 - E.g. Vehicle industry: -40°C to 105°C
- NAND Controller must adapt to new distributions automatically
 - Reading with default V_T threshold will lead to read errors

Other failure modes:

- Sudden die failures
- Sudden block failure
 - Block failures detected late during read operations
 - Not "bad blocks" detected during programming / erase
- Special failures may require incorporating RAID like solutions at the NAND die / block levels.
 - Allow data recovery
 - Last line of defense
 - Slow recovery method

Summary (1)

NAND controllers do more than just FTL

- Enabling reliability is one of the main tasks
- Similar and dissimilar to communication systems due to special requirements
 - E.g. NAND read penalty

• NAND controllers use many methods to improve reliability:

- NAND trim parameter optimization
 - E.g. V_T threshold optimization
- Unique ECC to support
 - Hard / soft Decoding
 - Low gate-count / power
 - Low latency / high throughputs / IOPs
 - RAID capabilities

Leading Innovation >>>

- Machine learning approach
 - Lower overheads, improve accuracy and performance

Summary (2)

Next Generation Challenges

- QLC enabled by BiCS 3D
 - Significantly tighter distributions
 - Small VT estimation errors will lead to large errors
 - New tradeoffs between reliability and performance
 - Program speeds Vs reliability
 - Read time / gate count / memory Vs reliability

TOSHIBA Leading Innovation >>>