Preparing Your Storage for Handling Even More Capacity - Again Block Storage

By Yosef Shatsky Storage Security & Software Architect 2019

Introduction

- Capacity has always been increasing what's new?
- What is the influence on the storage controller?
- Capacity is one of many factors
 - Workload
 - Performance
 - Feature set (disaster recovery, high availability, security, data reduction)

Worldwide Enterprise Storage Systems Capacity Shipped (PB)

IBM

RAM Consumers in the Controller

- Physical capacity management
 - Free space mapping
 - Garbage collection metrics
- Read/write cache
- Virtual to physical lookup
- Deduplication database

RAM Consumers in the Controller

- Physical capacity management
 - Free space mapping
 - Garbage collection metrics
- Read/write cache
- Virtual to physical lookup...
- Deduplication database

"The DRAM shortage will continue through 3Q19"

"While the DRAM supply shortage continues, there is a limit on capacity for the entire market"

The Metadata Challenge

Handle more data with the same amount of RAM

Increase Storage-to-RAM ratio

Swappable Structures

Metadata	Swap Mechanism	
Deduplication database	Content based	
Virtual to physical lookup	Location based	
Physical capacity management	Freed areas	

- Typically, most of the data is cold
- Tailor each type of metadata to its workload
 - Read / write
 - Random / sequential

Workload Optimized Metadata

Structure	Read Workload	Write Workload
Deduplication database	X	\checkmark
Read/write cache	\checkmark	\checkmark
Virtual to physical lookup	\checkmark	\checkmark
Physical capacity management	X	1

Optimize at a fine granularity (e.g. volume), not system-wide

Storage Class Memory / NVRAM

- Metadata persistency
- Read / write cache

 Even without utilizing
 persistency
- Memory structure tiering

 Similarly to data tiering
 with HDD and SDD

Metadata Structure Efficiency

- Use larger chunk sizes
 - Increases the amount of data per metadata entry
 - Fewer entries are required

- Use a sparse deduplication database
 Reduces database size
 - Implement supplemental lookup algorithms

Proliferation of Storage Objects

- More: Volumes, Pools, Mirrors
- Caused by:
 - Increasing capacity
 - -VVols
 - Adoption rate was slow
 - Support is increasing
 - Vvols 2 replication
 - CDP Continuous Data Protection
 - More snapshots

Capacity Cap on Failure Domains

- How much data would you place in a single system?
- Can we keep increasing the capacity of a single system?
- Clients prefer not to put all their eggs in the same basket
- Clients want to limit the size of a failure domain
- Concern involves failures that lead to:
 - Data loss
 - Offline time
- Failures may also include security breaches

Failure Domain = a System

Failure Domain < a System

If due to increased capacity density even small systems have too much capacity for a failure domain?

Failure Domain < a System

If due to increased capacity density even small systems have too much capacity for a failure domain?

Failure Model

- Single failure \rightarrow redundant components
- System failure \rightarrow DR site
 - DR sites are expensive
 - May not be immediate failover
- Software failure domain
 - Same error in all nodes
 - Triggered by state
 - Cascading

Domains by Capacity Growth

Capacity per Failure Domain

Conclusions

Storage to RAM ratio

- Swappable memory structures
- Workload optimized structures
- Sparse deduplication database

Object Proliferation

- Support
- Management

Failure domain

- Many physical systems
- Software/logical failure domains

