
© 2019 IBM Corporation

Running High Performance POSIX
Deep Learning Workloads

with Object Storage
Or Ozeri, Effi Ofer, Ronen Kat

IBM Research – Haifa

January 2019

© 2019 IBM Corporation

Background

§ Machine learning is quickly becoming the disruptive technology of the decade
– Fueled by:

1) The explosion in big data
2) High-speed accelerators such as GPUs, FPGAs, and Tensor Processing Units
3) Advancement of training algorithms and architectures

2

§ Deep learning systems traditionally:
– Use a POSIX file system interface
– Keep the data locally on the same

machine as the GPUs

§ However, this model does not scale with the
number of users, the volume of data, and
the variety of workloads

© 2019 IBM Corporation

The Challenge

§ To handle all this big data, object storage has become a storage model of choice offering
– disaggregated storage
– high scalability
– low cost
– extremely high durability

3

§ But its performance
characteristics have
traditionally been a barrier for
analytics and machine
learning workloads

§ In this talk we explore how to run high throughput workloads on data that resides in inexpensive
object storage without the need to pre-load or stage the data

© 2019 IBM Corporation

How Much Throughput is Good Enough?

4

§ Most of the heavy work in machine
learning is done by the GPUs

§ With some GPUs selling for over
$10K, they are often the most
expensive component in a deep
learning system

§ We aim to provide throughput that is
sufficient to keep the GPUs busy
100% of the time

© 2019 IBM Corporation

Keeping Up With the GPUs

§ CPUs are currently advancing at a rate of about
1.1x performance improvement per year

§ GPUs are advancing at a rate of about 1.5x per
year or 10x performance improvement every 5 to
6 years

§ Can we expect machine learning workload to
consume 5000MB/s+ in 2024?

5

§ Storage Bandwidth (MB/s) of popular
deep learning workloads running
with varying number of Nvidia Volta
V100 GPUs

© 2019 IBM Corporation

Architecture

6

§ Keep the data on inexpensive object storage
– Training data
– Results (logs + trained model)

§ Support existing deep learning workloads without modifications
– Enable deep learning workload to continue using POSIX

interface

§ Keep the GPUs busy
– Supply data faster than object store single connection speeds
– Support prefetching and optimize traffic
– Leverage a local in-memory cache

S3fs Fuse

Deep learning workload

cache

File API

Object API

IBM Cloud Object
Storage

© 2019 IBM Corporation

Supply Data Faster Than Object Store Single Connection Speed

§ Single threaded performance is well below the
last network link bandwidth

§ Driven by the multi user, multi tenant, distributed
nature of object storage

§ When a client requests multiple requests, an
object storage can easily saturate his or her
network

§ We therefore convert read requests into multiple
concurrent requests

§ This allows us to sustain local disk like
throughputs (550MBytes/sec) for single object
read

7

Compute Node

TensorFlow job

S3fsCompute Node

TensorFlow job

S3fs

DLaaS

IBM
Cloud Object

Storage

© 2019 IBM Corporation

Reading in Chunks

§ We choose chunk size of 52 MB

§ Why 52 MB?
– Optimal chunk size for our environment is around 50MB
– Our object storage best practices suggest using range read requests that are multiples of 4 MB

8

§ We read data in chunks
rather than read the precise
amount that the client
requests

§ A larger chunk size enables a
‘poor man’s read ahead
prefetching’

§ A smaller chunk size enables
additional concurrent reads

© 2019 IBM Corporation

In-Memory Cache

§ We have deployed an in-memory cache
using the Linux kernel page cache

§ Collocated with the compute nodes

§ Caching both
– data chunks
– meta data

§ Limited by
– client side network bandwidth
– overheads from the FUSE fs
– client side copy

§ Since deep learning frameworks often
run their training in multiple epochs this
results in substantial speed
improvement as long as the data fits
within the cache

9

© 2019 IBM Corporation

Small Objects Overhead – Read Ahead Prefetching

§ Small objects suffer disproportionately from the overhead of the time-to-first-byte from object storage

§ Best practices suggest combining multiple training records into a single data file

– E.g., TFRecord in Tensorflow or HDF5 in pyTorch

– Makes it easy to mix, match, and shuffle data sets

§ But when data is packaged into larger objects, the read-ahead feature of the cache avoids this overhead

10

© 2019 IBM Corporation

Implementation

§ Use s3fs FUSE based file system to provide POSIX interface

§ Leverage a local in-memory cache
– provide high throughput and low latency data access

§ Supply data faster than object store single connection speeds

11

S3fs Fuse

Container
Running Deep Learning Workload

Volume

Create mount point
Mount the bucket

Kubernetes s3fs Driver

IBM Fabric
for Deep
Learning

Mount bucket

IBM
Cloud Object

Storage

§ Deployed in IBM Deep
Learning as a Service
(DLaaS) and IBM Cloud
Kubernetes Service
(IKS) on the IBM Cloud

§ Machine learning
workload runs on
Kubernetes containers

§ Training data and trained
model stored in IBM
Cloud Object Storage

IBM DLaaS

cache

© 2019 IBM Corporation

Open Source Contributions

12

§ The core of Deep Learning as a Service
– A deep learning platform offering TensorFlow,

Caffe, PyTorch etc. as a Service on Kubernetes
https://github.com/ibm/ffdl

§ Kubernetes volume plug-in that enables pods to
access IBM Cloud Object Storage buckets.
Includes:
– A dynamic provisioner
– A driver for mounting the buckets using s3fs-

fuse on a worker node
https://github.com/IBM/ibmcloud-object-storage-
plugin

§ S3fs enhancements have been contributed to the
s3fs project repository
https://github.com/s3fs-fuse/s3fs-fuse

https://github.com/ibm/ffdl
https://github.com/IBM/ibmcloud-object-storage-plugin
https://github.com/s3fs-fuse/s3fs-fuse

© 2019 IBM Corporation13

הדות

