

# Running High Performance POSIX Deep Learning Workloads with Object Storage

Or Ozeri, **Effi Ofer**, Ronen Kat IBM Research – Haifa

January 2019

© 2019 IBM Corporation

- Machine learning is quickly becoming the disruptive technology of the decade – Fueled by:
  - 1) The explosion in big data
  - 2) High-speed accelerators such as GPUs, FPGAs, and Tensor Processing Units
  - 3) Advancement of training algorithms and architectures



- Deep learning systems traditionally:
  - Use a POSIX file system interface
  - Keep the data locally on the same machine as the GPUs
- However, this model does not scale with the number of users, the volume of data, and the variety of workloads



#### The Challenge

- To handle all this big data, object storage has become a storage model of choice offering
  - disaggregated storage
  - high scalability
  - low cost
  - extremely high durability
- But its performance characteristics have traditionally been a barrier for analytics and machine learning workloads







#### How Much Throughput is Good Enough?



- Most of the heavy work in machine learning is done by the GPUs
- With some GPUs selling for over \$10K, they are often the most expensive component in a deep learning system
- We aim to provide throughput that is sufficient to keep the GPUs busy 100% of the time





 Storage Bandwidth (MB/s) of popular deep learning workloads running with varying number of Nvidia Volta V100 GPUs

| GPUs | Resnet152 | Resnet50 | VGG11 | Alexnet | Speech LSTM |
|------|-----------|----------|-------|---------|-------------|
| 1    | 28.8      | 62.9     | 77.0  | 246.1   | 17.8        |
| 2    | 58.3      | 136.9    | 122.9 | 423.9   | 29.4        |
| 4    | 107.4     | 224.4    | 174.4 | 570.1   | 64.3        |
| 8    | 180.6     | 370.6    | 208.9 | 526.4   | 107.0       |

- CPUs are currently advancing at a rate of about 1.1x performance improvement per year
- GPUs are advancing at a rate of about 1.5x per year or 10x performance improvement every 5 to 6 years
- Can we expect machine learning workload to consume 5000MB/s+ in 2024?



- Keep the data on inexpensive object storage
  - Training data
  - Results (logs + trained model)
- Support existing deep learning workloads without modifications
  - Enable deep learning workload to continue using POSIX interface
- Keep the GPUs busy
  - Supply data faster than object store single connection speeds
  - Support prefetching and optimize traffic
  - Leverage a local in-memory cache



# Supply Data Faster Than Object Store Single Connection Speed



- Single threaded performance is well below the last network link bandwidth
- Driven by the multi user, multi tenant, distributed nature of object storage
- When a client requests multiple requests, an object storage can easily saturate his or her network
- We therefore convert read requests into multiple concurrent requests
- This allows us to sustain local disk like throughputs (550MBytes/sec) for single object read



## **Reading in Chunks**



- We read data in chunks rather than read the precise amount that the client requests
- A larger chunk size enables a 'poor man's read ahead prefetching'
- A smaller chunk size enables additional concurrent reads



- Why 52 MB?
  - Optimal chunk size for our environment is around 50MB
  - Our object storage best practices suggest using range read requests that are multiples of 4 MB



© 2019 IBM Corporation

### **In-Memory Cache**

- We have deployed an in-memory cache using the Linux kernel page cache
- Collocated with the compute nodes
- Caching both
  - data chunks
  - meta data
- Limited by
  - client side network bandwidth
  - overheads from the FUSE fs
  - client side copy
- Since deep learning frameworks often run their training in multiple epochs this results in substantial speed improvement as long as the data fits within the cache



Cache Hit Cache Miss

#### Throughput for Cache Hit vs Cache Miss



- Best practices suggest combining multiple training records into a single data file
  - E.g., TFRecord in Tensorflow or HDF5 in pyTorch
  - Makes it easy to mix, match, and shuffle data sets
- But when data is packaged into larger objects, the read-ahead feature of the cache avoids this overhead

IBM Cloud Object

**Storage** 

#### **Implementation**

- Deployed in IBM Deep Learning as a Service (DLaaS) and IBM Cloud Kubernetes Service (IKS) on the IBM Cloud
- Machine learning workload runs on Kubernetes containers
- Training data and trained model stored in IBM Cloud Object Storage
- IBM Fabric for Deep Learning
   Mount bucket

   Kubernetes s3fs Driver Create mount point Mount the bucket
   Volume S3fs Fuse

   IBM DLaaS
   IBM DLaaS
- Use s3fs FUSE based file system to provide POSIX interface
- Leverage a local in-memory cache
  - provide high throughput and low latency data access
- Supply data faster than object store single connection speeds





- The core of Deep Learning as a Service
  - A deep learning platform offering TensorFlow, Caffe, PyTorch etc. as a Service on Kubernetes <u>https://github.com/ibm/ffdl</u>
- Kubernetes volume plug-in that enables pods to access IBM Cloud Object Storage buckets. Includes:
  - A dynamic provisioner
  - A driver for mounting the buckets using s3fsfuse on a worker node

https://github.com/IBM/ibmcloud-object-storageplugin

 S3fs enhancements have been contributed to the s3fs project repository https://github.com/s3fs-fuse/s3fs-fuse







