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Background

§ Machine learning is quickly becoming the disruptive technology of the decade
– Fueled by:

1) The explosion in big data 
2) High-speed accelerators such as GPUs, FPGAs, and Tensor Processing Units
3) Advancement of training algorithms and architectures
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§ Deep learning systems traditionally:
– Use a POSIX file system interface 
– Keep the data locally on the same 

machine as the GPUs

§ However, this model does not scale with the 
number of users, the volume of data, and 
the variety of workloads
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The Challenge

§ To handle all this big data, object storage has become a storage model of choice offering
– disaggregated storage
– high scalability
– low cost
– extremely high durability
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§ But its performance 
characteristics have 
traditionally been a barrier for 
analytics and machine 
learning workloads

§ In this talk we explore how to run high throughput workloads on data that resides in inexpensive 
object storage without the need to pre-load or stage the data
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How Much Throughput is Good Enough?
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§ Most of the heavy work in machine 
learning is done by the GPUs

§ With some GPUs selling for over 
$10K, they are often the most 
expensive component in a deep 
learning system

§ We aim to provide throughput that is 
sufficient to keep the GPUs busy 
100% of the time
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Keeping Up With the GPUs

§ CPUs are currently advancing at a rate of about 
1.1x performance improvement per year

§ GPUs are advancing at a rate of about 1.5x per 
year or 10x performance improvement every 5 to 
6 years

§ Can we expect machine learning workload to 
consume 5000MB/s+ in 2024?
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§ Storage Bandwidth (MB/s) of popular 
deep learning workloads running 
with varying number of Nvidia Volta 
V100 GPUs
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Architecture
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§ Keep the data on inexpensive object storage
– Training data
– Results (logs + trained model)

§ Support existing deep learning workloads without modifications
– Enable deep learning workload to continue using POSIX 

interface

§ Keep the GPUs busy
– Supply data faster than object store single connection speeds
– Support prefetching and optimize traffic
– Leverage a local in-memory cache 

S3fs Fuse

Deep learning workload

cache

File API

Object API

IBM Cloud Object
Storage
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Supply Data Faster Than Object Store Single Connection Speed

§ Single threaded performance is well below the 
last network link bandwidth

§ Driven by the multi user, multi tenant, distributed 
nature of object storage

§ When a client requests multiple requests, an 
object storage can easily saturate his or her 
network 

§ We therefore convert read requests into multiple 
concurrent requests

§ This allows us to sustain local disk like 
throughputs (550MBytes/sec) for single object 
read
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Compute Node

TensorFlow job

S3fsCompute Node

TensorFlow job

S3fs

DLaaS
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Cloud Object

Storage
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Reading in Chunks

§ We choose chunk size of 52 MB

§ Why 52 MB?
– Optimal chunk size for our environment is around 50MB
– Our object storage best practices suggest using range read requests that are multiples of 4 MB
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§ We read data in chunks 
rather than read the precise 
amount that the client 
requests

§ A larger chunk size enables a 
‘poor man’s read ahead 
prefetching’

§ A smaller chunk size enables 
additional concurrent reads
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In-Memory Cache

§ We have deployed an in-memory cache 
using the Linux kernel page cache

§ Collocated with the compute nodes

§ Caching both 
– data chunks 
– meta data

§ Limited by 
– client side network bandwidth
– overheads from the FUSE fs
– client side copy

§ Since deep learning frameworks often 
run their training in multiple epochs this 
results in substantial speed 
improvement as long as the data fits 
within the cache
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Small Objects Overhead – Read Ahead Prefetching

§ Small objects suffer disproportionately from the overhead of the time-to-first-byte from object storage

§ Best practices suggest combining multiple training records into a single data file

– E.g., TFRecord in Tensorflow or HDF5 in pyTorch

– Makes it easy to mix, match, and shuffle data sets  

§ But when data is packaged into larger objects, the read-ahead feature of the cache avoids this overhead
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Implementation

§ Use s3fs FUSE based file system to provide POSIX interface 

§ Leverage a local in-memory cache 
– provide high throughput and low latency data access 

§ Supply data faster than object store single connection speeds
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S3fs Fuse

Container
Running Deep Learning Workload

Volume

Create mount  point
Mount the bucket

Kubernetes s3fs Driver

IBM Fabric 
for Deep 
Learning

Mount bucket

IBM 
Cloud Object

Storage

§ Deployed in IBM Deep 
Learning as a Service 
(DLaaS) and IBM Cloud 
Kubernetes Service 
(IKS) on the IBM Cloud

§ Machine learning 
workload runs on 
Kubernetes containers

§ Training data and trained 
model stored in IBM 
Cloud Object Storage

IBM DLaaS

cache
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Open Source Contributions

12

§ The core of Deep Learning as a Service 
– A deep learning platform offering TensorFlow, 

Caffe, PyTorch etc. as a Service on Kubernetes
https://github.com/ibm/ffdl

§ Kubernetes volume plug-in that enables pods to 
access IBM Cloud Object Storage buckets.  
Includes:
– A dynamic provisioner 
– A driver for mounting the buckets using s3fs-

fuse on a worker node
https://github.com/IBM/ibmcloud-object-storage-
plugin

§ S3fs enhancements have been contributed to the 
s3fs project repository 
https://github.com/s3fs-fuse/s3fs-fuse

https://github.com/ibm/ffdl
https://github.com/IBM/ibmcloud-object-storage-plugin
https://github.com/s3fs-fuse/s3fs-fuse
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