
PMEM File-System in User-Space

Shachar Sharon
shachar.sharon@netapp.com

SNIA EMEA, Storage Developer Conference 2020, Tel-Aviv, Israel

1 / 1

shachar.sharon@netapp.com


In This Talk:

• Lessons learned at NetApp from developing PMEM-based file-system

• Discuss how PMEM technologies are a game-changer in file-system
design

• Use case: PMFS2 over ZUFS

2 / 1



NetApp’s MAX-Data is a PMEM-based Solution

"Get MAX power with Intel Optane and NetApp Memory Accelerated Data"

3 / 1



MAX-Data Overview

• Enterprise grade storage solution

• PMEM-based file-system

• Low-latency (sub 10us), high throughput (millions of IOPS)

• Snapshots, crash consistency, POSIX compliant

• Written in user-space (via ZUFS)

4 / 1



ZUFS Overview
A framework for developing PMEM-based file-system in user-space

• Optimized for PMEM devices

• Zero-copy between kernel and
user-space

• Designed for modern multi-cores
machines

5 / 1



NetApp Open-Sourced ZUFS

• ZUFS is a framework for developing PMEM-based file-system in
user-space

• PMFS2 is an educational file-system over ZUFS

• Open-source:
https://github.com/NetApp/zufs-zuf
https://github.com/NetApp/zufs-zus
https://github.com/sagimnl/pmfs2

6 / 1

https://github.com/NetApp/zufs-zuf
https://github.com/NetApp/zufs-zus
https://github.com/sagimnl/pmfs2


Linux PMEM-based File-Systems

• DAX based file-system (xfs, ext4)

• PMFS was an attempt to implement an in-kernel PMEM file-system
(discontinued)

• NOVA is still under development

• PMFS2 is a re-implementation of PMFS in user-space using ZUFS

7 / 1



PMFS2 Overview

• An educational file-system

• Fundamental block/page size: 4K

• Data structures at sub-block granularity

• Sync operations at cache-lines granularity

• File mapping using radix-tree

• Space management via free-queue

• Recon/fsck upon mount (no journal)

8 / 1



Performance of User-Space File-System
ZUFS + PMFS2

Can a user-space PMEM file-system be as good as in-kernel?

9 / 1



Performance Benchmarks with FIO (4K-random)

$ fio --name=pmfs2-bs4-jobs32
--filename=/mnt/pmfs2/pmfs2-bs4-jobs32
--numjobs=32 --bs=4096 --size=33554432
--fallocate=none --rw=randwrite --ioengine=psync
--sync=1 --direct=1 --time_based --runtime=30
--thinktime=0 --norandommap --group_reporting
--randrepeat=1 --unlink=1 --fsync_on_close=1
--minimal

10 / 1



PMFS2 Performance (4K-random)

11 / 1



PMFS2 vs kernel DAX-filesystems (4K-random)

12 / 1



PMFS2 vs in-kernel DAX-filesystems (Zoom-in)

13 / 1



Key Observations on PMEM technology

PMEM is a paradigm shift in file-system design!

14 / 1



Lessons Learned from ZUFS and PMFS2

• Meta-data sync at cache-line granularity (e.g., inodes, dentries)

• Alternative file-mapping (radix-tree vs traditional B-tree)

• Soft updates are preferred over journal

• Stay on same CPU when possible

• Bypass page-cache, avoid extra copies

15 / 1



Example 1: Regular File Mapping

• A regular file implements
mapping from virtual-address to
physical address

• UFS used indirect inode pointer
pointer structure

• Many modern file-systems use
variant on B-tree

• PMEM allows using alternative
data-structure (radix-tree)

16 / 1



Regular File Operations

Modern files are complex:

• read, write, pread, pwrite

• truncate, ftruncate

• lseek(SEEK_DATA, SEEK_HOLE), fiemap

• fallocate (FL_PUNCH_HOLE, FL_COLLAPSE_RANGE)

• copy_file_range, ioctl(FICLONE)

• stat, fstat, mmap

17 / 1



File Mapping on PMEM
Hierarchical address-mapping with radix-tree

• Data leaves: 4K-page

• Mapping: 512 pointers per page

• Mapping level-1: 2M

• Mapping level-2: 1G

• Root-pointer and height on inode

root: height=2

mapping-2

mapping-1

data

4K-page 4K-page 4K-page 4K-page

18 / 1



File Write
Write as a sequence of crash consistent operations

pwrite(fd,"new",3,0x202000)

1 Allocate new data block, zeroed
2 Copy data to newly allocated

block
3 Allocate new meta block, zeroed
4 Set pointer on mapping level-1
5 Set pointer on mapping level-2
6 Update root

root: height=2

mapping-2

5

mapping-1
3

4

data
1

new
2

19 / 1



File Write
Increase tree height

pwrite(fd,"tail",4,0x40000000) new-root: height=3

mapping-3

root: height=2

mapping-2

mapping-1

data

tail

20 / 1



Example 2: Crash Consistency

Problem: how to maintain file system integrity in the event of a
crash?

• Common method: journal

• PMEM file-system allows to revive the old method of soft-updates

• Requires careful crafting of meta-data and order of operations

21 / 1



Crash Consistency on PMEM File-Systems
(Not fully implemented on PMFS2, yet)

• PMEM speed is closer to DRAM than SSD

• Fast enough to allow entire file-system re-scan upon mount

• Scan file-system from root, declare unreachable pages as free

• Extra bits for meta-data recovery state

• No need to have a journal

22 / 1



Follow MAX-Data via NetApp’s Blog

https://blog.netapp.com/memory-accelerated-flexpod

23 / 1

https://blog.netapp.com/memory-accelerated-flexpod


Questions?

24 / 1


