
1 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved. 

Virtual Conference

June 8, 2021

Development of software-
defined storage engine for 
25 million IOPS

Dmitrii Smirnov, AOSTO



2 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Agenda

 Background
 Problem

 Challenge

 Software-defined storage solutions
 Overview

 Testing

 Research

 Software-defined storage development
 MVP

 Testing

 Research

 Results

 Linux kernel vs SPDK

 Mistakes

 Evaluation



3 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Background

 CPU
 AMD EPYC 2nd/3rd Gen with PCI-e 4.0

 Intel Xeon Ice Lake with PCI-e 4.0

 DPU
 NVIDIA BlueField-2 200G and BlueField-3 400G

 NVMe
 NVMe SSDs 1M+ IOPS and 6+ GiB/s

 Ethernet Bunch of Flash (EBOF)

 Network
 NVIDIA ConnectX-6 200G and ConnectX-7 400G

 Software
 Linux kernel 5.11

 Storage Performance Development Kit (SPDK)



4 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Problem

 Expectations

 Single-node storage platform with 24 NVMe SSDs could provide 
up to 24M IOPS or 100 GiB/s

 Reality

 single-node platform with 24 NVMe SSDs provides 10M IOPS

 2-node platform with 24 NVMe SSDs provides 20M IOPS

 4-node platform with 24 NVMe SSDs provides 24M IOPS

 Problems

 Existing solutions do not use the full performance potential of 
modern hardware, wasting millions of IOPS

 Dozens of inefficient storage nodes within cluster cause 
unnecessary infrastructure overgrowth

 Increased data center design complexity, deployment and 
maintenance costs



5 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Challenge

 Get the best performance from software-defined storage on 

modern hardware

 AMD CPU, PCI-e 4.0, NVMe SSDs x24

 Find SDS engine with 24M IOPS on random read

 Provide single-node block storage for HPC, AI/ML/DL, Data 

analytics and Databases

 Get ready for the future hyperscale software-defined data 

center solutions, both hyperconverged and composable

disaggregated infrastructure

 PCI-e 5.0, EBOF, multi-node storage



6 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage
Overview



7 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS solutions. Overview

 By data access
 block, file, object

 By deployment and architecture
 Single-node, multi-node

 Centralized, Hyperconverged, Composable Disaggregated

 SmartNIC/DPU-based

 Target-side, initiator-side

 By use case
 High-Performance Computing, Artificial Intelligence, Machine & Deep Learning, Real-time Analytics

 Media & Entertainment, Post production, Streaming

 Edge computing, Autonomous vehicles, 5G networks

 Open-source
 Linux MDRAID, Volume Manager (LVM)

 SPDK RAID, Volume Manager



8 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS solutions. Testing NVMe

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 NVMe SSDs x24, PCI-e 4.0

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel IOPS and latency are not OK

 SPDK is OK

 Research required

0 5 10 15 20 25 30

NVMe SSDs x24

md-raid0

md-raid5

lvm

spdk-raid0/lvol

MIOPS

MIOPS Avg latency, usec p99 latency, usec

NVMe SSDs x24 25,6 120 154

md-raid0 9,3 330 440

md-raid5 1,4 2200 2600

lvm 25,3 121 159

spdk-raid0/lvol 25,4 120 157



9 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS solutions. Research

 > Why only read-intensive workload for IOPS and latency metrics?
 Read-intensive workload shows potential performance and software bottlenecks, as opposed to write-intensive, 

which depends on drive health, garbage collector, journal, thin allocation, read-modify-write

 > Could we use high-performance SPDK RAID and Volume Manager for SDS?
 No RAID metadata

 Datapath (RAID, logical volumes) is not intended for cluster SDS

 Data services (thin provisioning, snapshots) are not intended for cluster SDS

 No local block device (optional requirement)

 > Why is kernel software performance so much worse than the actual NVMe SSDs performance?
 Existing kernel software is still heavy and is not CPU-friendly

 CPU - main resource for IOPS and latency performance

 «Is Parallel Programming Hard, And, If So, What Can You Do About It?», Paul E. McKenney

 > How validate the real performance potential of SDS?
 IOPS and latency testing on NULL or RAM devices



10 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS solutions. Testing RAM

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 RAM devices x24

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel IOPS and latency are not OK

 SDS development required

0 10 20 30 40 50 60

RAM disks x24

md-raid0

md-raid5

lvm

MIOPS

MIOPS Avg latency, usec p99 latency, usec

RAM disks x24 47,9 64 87

md-raid0 11,6 264 375

md-raid5 1,5 2050 2500

lvm 38,1 80 110



11 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage
Development



12 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. MVP

 Software-defined storage engine
 Datapath, RAID, volume manager, pool management, erasure coding, thin provisioning, 

rebuild, metadata, QoS

 Reconfiguration (level migration and scaling), journal, spare disk, spare (empty) block, 
snapshots, clones, compression, deduplication, ZNS support

 C programming

 Linux Kernel and SPDK support
 Without differences in the core and cluster logic, the same code and algorithms

 Kernel block device

 SPDK virtual bdev

 Maximum performance
 Read-intensive workload, IOPS and latency metrics



13 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Kernel vs SPDK

 Linux kernel

 Use cases

 User app needs local block device

 Filesystem in kernel

 Features

 Provides local block device

 No specific architecture requirements

 SPDK

 Use cases

 User app in userspace

 Filesystem in userspace

 Virtualization, SPDK vhost

 NVMe/TCP, NVMe/RDMA

 Features

 Can run in containers

 Requires lockless architecture for datapath
and data services

 SDS module - sto



14 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Testing NVMe

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 NVMe SSDs x24, PCI-e 4.0

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel sto-v1 IOPS are not OK

 Kernel sto-v1 latency is OK

 Research required

0 5 10 15 20 25 30

NVMe SSDs x24

md-raid0

md-raid5

lvm

spdk-raid0/lvol

sto-v1

MIOPS

MIOPS Avg latency, usec p99 latency, usec

NVMe SSDs x24 25,6 120 154

md-raid0 9,3 330 440

md-raid5 1,4 2200 2600

lvm 25,3 121 159

spdk-raid0/lvol 25,4 120 157

sto-v1 19,9 154 205



15 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Testing RAM

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 RAM devices x24

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel sto-v1 IOPS are not OK

 Kernel sto-v1 latency is OK

 Research required

0 10 20 30 40 50 60

RAM disks x24

md-raid0

md-raid5

lvm

sto-v1

MIOPS

MIOPS Avg latency, usec p99 latency, usec

RAM disks x24 47,9 64 87

md-raid0 11,6 264 375

md-raid5 1,5 2050 2500

lvm 38,1 80 110

sto-v1 23,1 132 184



16 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Research

Bottleneck search by disabling SDS components

 Datapath (fast path) disassembly

 Inline and background data services

 Logical allocation tables, parallel data access, stripe ownership, QoS and request counting

 Linux kernel block layer, thread and memory management

Bottleneck types

 Code problems

 Heaviness, using a lot of CPU resources per 1M IOPS

 Logic problems

 CPU or NVMe resources are not fully utilized, idling, scheduling



17 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Research #2

 General suggestions

 Do not use blk-mq or device-mapper for IOPS target, if it is not necessary

 Do not use block schedulers for IOPS target

 Avoid moving from current thread context even within the same NUMA-node and CPU

 Avoid abusing kmem_cache for a lot of wrappers

 Avoid kernel API with spinlocks and atomics inside

 kthread_queue_work, queue_work, wake_up_process, etc.

 Not recommended, but better than nothing

 Fine-grained spinlocks and atomics, read/write locks and semaphores

 Read-Copy-Update (RCU) is not a panacea for write-mostly and consistent data

 Polling-based thread management



18 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Research #3

Solutions

 Use a bio-based queue and develop your own bio merge algorithms

 Stay in the thread context

 Per-CPU and thread-aware architecture

 Develop your own lockless queue_work using kthreads API, if it is necessary

 Use non-blocking synchronization techniques

 Wait-free, Lock-free, Obstruction-free, Clash-free

 Parallel-Fastpath Design Patterns

 Fine-grained atomic CAS-based algorithms

 Fine-grained bitmaps and lockless lists for data access



19 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Data services

 Multi-tenancy and noisy neighbor problem
 QoS

 Per-cpu/thread objects and RCU for read-mostly data

 Mapping for logical and physical extents (allocation table)
 Per-cpu/thread reserved data areas with offsets

 io merge algorithms
 Per-cpu/thread trees for sequences and ranges

 Stripe cache
 Per-cpu/thread pools and reserved buffers

 Stripe access
 Fine-grained bitmaps and CAS-based ownership

 Journal and snapshots (copy-on-write, redirect-on-write)
 Fine-grained bitmaps and reserved areas within consistency groups



20 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Results on RAM

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 RAM devices x24

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel sto-v2 IOPS and latency are OK

0 10 20 30 40 50 60

RAM disks x24

md-raid0

md-raid5

lvm

sto-v1

sto-v2

MIOPS

MIOPS Avg latency, usec p99 latency, usec

RAM disks x24 47,9 64 87

md-raid0 11,6 264 375

md-raid5 1,5 2050 2500

lvm 38,1 80 110

sto-v1 23,1 132 184

sto-v2 36,5 84 114



21 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Results on NVMe

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 NVMe SSDs x24, PCI-e 4.0

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel sto-v2 IOPS and latency are OK

 Ready for SPDK

0 5 10 15 20 25 30

NVMe SSDs x24

md-raid0

md-raid5

lvm

spdk-raid0/lvol

sto-v1

sto-v2

MIOPS

MIOPS Avg latency, usec p99 latency, usec

NVMe SSDs x24 25,6 120 154

md-raid0 9,3 330 440

md-raid5 1,4 2200 2600

lvm 25,3 121 159

spdk-raid0/lvol 25,4 120 157

sto-v1 19,9 154 205

sto-v2 25,2 121 160



22 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Kernel vs SPDK

 Linux kernel
 Easy to develop SDS, hard to get performance

 Lets you use whatever you want and helps you. But every memory allocation or atomic variable 
will hurt you and waste millions of IOPS

 You have no right to make a mistake in a performance architecture

 SPDK
 Hard to develop SDS, easy to get performance

 Requires lockless SDS design, event-driven, poll-based. But does not punish you for atomics, 
inefficient code and heavy algorithms

 You have the right to make a mistake 

 Solution
 Non-blocking synchronization techniques and parallel-fastpath design patterns will fix all your 

issues in both Linux kernel and SPDK



23 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage
Mistakes



24 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Mistakes

 > We removed this potential bottleneck and didn’t notice an increase in 

performance, probably not a problem

 Probably a much larger bottleneck hides the current bottleneck

 The performance optimization graph is not linear - the first bottleneck costs 15M IOPS, the 

second costs 10M, the third costs 5M, and so on

 > It's just an io request counter

 Even one atomic variable for statistics/traces/QoS could waste from 1M to 15M IOPS

 > If there are no problems on the flamegraph, there is nothing to optimize

 If you don’t have outliers - the whole code is equally slow



25 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Mistakes #2

 > Let’s optimize datapath but the background data service will not
 Performance optimization approach – all or nothing

 The more efficiently a background data service uses CPU, the more resources remain for the 
datapath

 > Let’s assign only a part of all CPU cores to datapath to free resources for other 
applications
 The less resources the datapath uses, the less performance you get

 The solution – per CPU datapath, per CPU data services (optional)

 > Let’s balance datapath between CPU cores to get more performance
 Moving the io request to another CPU takes time, unlike handling in the current context

 Balancing datapath between CPUs reduces system performance and increases the io request latency

 > Let’s limit the CPU usage
 CPU usage by SDS depends on incoming data workload

 If you limit the CPU usage, you limit the IOPS



26 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Mistakes #3

 > We develop in userspace and have no performance issues

 No matter how you develop and run storage software - kernel or DPDK/SPDK, 

storage node or SmartNIC/DPU

 > We don’t need high-performance processor for software development

 Don’t be sure you unleash the full hardware potential

 > Let's not reinvent the wheel, use the generic system API and hope it is 

optimized

 Don't be sure other developers are testing on multi-million IOPS hardware



27 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Evaluation

 Goal
 Researching performance bottlenecks using read-intensive workloads

 Unlocking the software potential on modern hardware

 Benchmarks
 Synthetic workloads vs real-world workloads

 Industry standards
 SPC-1, SPC-2, SNIA SSS PTS, SPECstorage Solution 2020, STAC-M3, IO-500

 Applying
 Single-node local storage for cloud-native applications

 Disaggregated storage for HPC using JBOF/EBOF

 Limitations
 PCIe 4.0 x128, DDR4, Network



28 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

What’s next

Multi-active software-defined storage for hyperconverged and 

composable disaggregated infrastructure

SmartNIC/DPU integration

Cloud-native API integration

Open-source



29 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved. 

Please take a moment to rate this session. 
Your feedback is important to us. 


