STORAGE DEVELOPER CONFERENCE

=S D GEMEA | Virtual Conference

BY Developers FOR Developers | June 8, 2021

Development of software-
defined storage engine for
25 million IOPS

Dmitrii Smirnov, AOSTO

W AW
Agenda

* Background
= Problem
= Challenge

= Software-defined storage solutions
= Overview
= Testing
= Research
= Software-defined storage development
= MVP
= Testing
= Research
= Results
= Linux kernel vs SPDK
= Mistakes
= Evaluation

2 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

EEEES . TY .. .
Background

= CPU

= AMD EPYC 2nd/3d Gen with PCl-e 4.0

= |Intel Xeon Ice Lake with PCl-e 4.0
« DPU

= NVIDIA BlueField-2 200G and BlueField-3 400G
* NVMe

= NVMe SSDs 1M+ IOPS and 6+ GiB/s

= Ethernet Bunch of Flash (EBOF)
= Network

= NVIDIA ConnectX-6 200G and ConnectX-7 400G
= Software

= Linux kernel 5.11
= Storage Performance Development Kit (SPDK)

3| ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

B\ TY . s LA

Problem
Expectations
Single-node storage platform with 24 NVMe SSDs could provide — =
up to 24M IOPS or 100 GiB/s BEV=Fs
Reality Software-defined storage
single-node platform with 24 NVMe SSDs provides 10M IOPS
2-node platform with 24 NVMe SSDs provides 20M IOPS ||ﬁ
4-node platform with 24 NVMe SSDs provides 24M IOPS | | |_|i|
Problems

Existing solutions do not use the full performance potential of
modern hardware, wasting millions of IOPS

Dozens of inefficient storage nodes within cluster cause
unnecessary infrastructure overgrowth

Increased data center design complexity, deployment and
maintenance costs

4| ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

B . TY . W LA
Challenge

Get the best performance from software-defined storage on
modern hardware

AMD CPU, PCl-e 4.0, NVMe SSDs x24
Find SDS engine with 24M IOPS on random read

Provide single-node block storage for HPC, AlI/ML/DL, Data
analytics and Databases

Get ready for the future hyperscale software-defined data
center solutions, both hyperconverged and composable
disaggregated infrastructure

PCl-e 5.0, EBOF, multi-node storage

5| ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage

Overview

6 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

L T Y .
SDS solutions. Overview

By data access
= block, file, object
By deployment and architecture
= Single-node, multi-node
= Centralized, Hyperconverged, Composable Disaggregated
= SmartNIC/DPU-based
= Target-side, initiator-side
* By use case
= High-Performance Computing, Artificial Intelligence, Machine &
= Media & Entertainment, Post production, Streaming
= Edge computing, Autonomous vehicles, 5G networks
Open-source
= Linux MDRAID, Volume Manager (LVM)
= SPDK RAID, Volume Manager

7 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Y\ TY . W LA
SDS solutions. Testing NVMe

Configuration
AMD EPYC 7742, 64 cores, 128 threads
NVMe SSDs x24, PCl-e 4.0

Fedora Server 34, Linux Kernel 5.11 spdk-raid0/Ivol

SPDK v21.04
fio-3.26 |
vm
I/O workload 4 KiB random read, QD=128 per drive
Results
Kernel IOPS and latency are not OK md-raid5
SPDK is OK
Research required
md-raid0
MIOPS | Avg latency, usec | p99 latency, usec
NVMe SSDs x24 | 25,6 120 154 NVMe SSDs x24
md-raid0 9,3 330 440
md-raid5 1,4 2200 2600
lvm 25,3 121 159
spdk-raid0/Ivol | 25,4 120 157

8 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

L . TY . e LAJ T
SDS solutions. Research

> Why only read-intensive workload for IOPS and latency metrics?

Read-intensive workload shows potential performance and software bottlenec
which depends on drive health, garbage collector, journal, thin allocation, reac

> Could we use high-performance SPDK RAID and Volume Manager f
No RAID metadata
Datapath (RAID, logical volumes) is not intended for cluster SDS
Data services (thin provisioning, snapshots) are not intended for cluster SDS
No local block device (optional requirement)
> Why is kernel software performance so much worse than the actual
Existing kernel software is still heavy and is not CPU-friendly
CPU - main resource for IOPS and latency performance
«Is Parallel Programming Hard, And, If So, What Can You Do About It?», Pau
> How validate the real performance potential of SDS?
IOPS and latency testing on NULL or RAM devices

9 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

EEEY . TY . W LA
SDS solutions. Testing RAM

Configuration
AMD EPYC 7742, 64 cores, 128 threads
RAM devices x24

Fedora Server 34, Linux Kernel 5.11 lvm

SPDK v21.04

fio-3.26

I/0 workload 4 KiB random read, QD=128 per drive e
Results

Kernel IOPS and latency are not OK

SDS development required
md-raid0

MIOPS | Avg latency, usec | p99 latency, usec RAM disks x24
RAM disks x24 | 47,9 64 87
md-raid0 11,6 264 375
md-raid5 1,5 2050 2500
lvm 38,1 80 110

10 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage

Development

11 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

LY O W LA
SDS development. MVP

= Software-defined storage engine

= Datapath, RAID, volume manager, pool management, eras
rebuild, metadata, QoS

P B YaYaYalalidla Tala a\V/al\laalla
\J ATA AT U/ \.J \/ \/

7
a a ara AlATa AlAalAa - TaYalilla F=Ya a Ala A AlA
LIS w 3 w) w J w y U A U I w, w 3 \ UEWAW

= C programming
* Linux Kernel and SPDK support
= Without differences in the core and cluster logic, the same

= Kernel block device
= SPDK virtual bdev

= Maximum performance
* Read-intensive workload, IOPS and latency metrics

12 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

B T Y || TR A) - Y
SDS development. Kernel vs SPDK

Linux kernel

Use cases
User app needs local block device
Filesystem in kernel

SPDK ARCHITECTURE LINUX KERNEL ARCHITECTURE

Features St vhost-nvme o _'F‘a*;gﬂei RDMA
orage orage
. e ol Driver (TP | [_FC_|

Provides local block device Protocols Protocols

No specific architecture requirements local block device /dev/

SPDK
Device Drivers
Use cases
User app in userspace Storage Storage MDRAID (LVM
Filesystem in userspace Services Services
Virtualization, SPDK vhost
NVMe/TCP, NVMe/RDMA
Features : :
]] NVMe Devices NVMe Devices
Can run in containers
Requires lockless architecture for datapath DIVTICI | NVMe-oF Bhe OUe | NVMe [RomA | [PCI |
and data services ey PCle Host
TCP Driver Driver [TCP] [FC]

SDS module - sto

STORAGE DEVELOPER CONFERENCE

13 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved. = S D @ E M EA

B . TY i W LA
SDS development. Testing NVMe

Configuration
AMD EPYC 7742, 64 cores, 128 threads
NVMe SSDs x24, PCl-e 4.0

sto-vl
Fedora Server 34, Linux Kernel 5.11
SPDK v21.04
) spdk-raid0/Ivol
fio-3.26 '°
I/O workload 4 KiB random read, QD=128 per drive
Results i
Kernel sto-v1 IOPS are not OK
Kernel sto-v1 latency is OK md-raid5 .
Research required
MIOPS | Avg latency, usec | p99 latency, usec
NVMe SSDs x24 | 25,6 120 154
md-raid0 9,3 330 440 NVMeS T
md-raid5 1,4 2200 2600
lvm 25,3 121 159
spdk-raid0/Ivol | 25,4 120 157 5
sto-vl 19,9 154 205

14 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

EEEY . TY . W LA
SDS development. Testing RAM

Configuration
AMD EPYC 7742, 64 cores, 128 threads
RAM devices x24

Fedora Server 34, Linux Kernel 5.11 sto-vl
SPDK v21.04
fio-3.26
lvm
I/0O workload 4 KiB random read, QD=128 per drive
Results

Kernel sto-v1l IOPS are not OK md-raid5

Kernel sto-v1 latency is OK

Research required

md-raid0
MIOPS | Avg latency, usec | p99 latency, usec
RAM disks x24 | 47,9 64 87 RAM disks x24
md-raid0) 264 375
md-raid5 1,5 2050 2500
lvm 38,1 t{0) 110
sto-vl 23,1 132 184

15 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

EEEL . TY . s LA
SDS development. Research

= Bottleneck search by disabling SDS compone
= Datapath (fast path) disassembly

= Inline and background data services
= Logical allocation tables, parallel data access, stripe owne

= Linux kernel block layer, thread and memory manac

* Bottleneck types
= Code problems
= Heaviness, using a lot of CPU resources per 1M IOPS
= Logic problems
= CPU or NVMe resources are not fully utilized, idling, sche

16 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

LY L e s LA
SDS development. Research #2

= General suggestions
= Do not use blk-mq or device-mapper for IOPS target, if it I
= Do not use block schedulers for IOPS target
= Avoid moving from current thread context even within the ¢
= Avoid abusing kmem_cache for a lot of wrappers
= Avoid kernel API with spinlocks and atomics inside

= kthread _queue_work, queue_work, wake up_process, etc.

= Not recommended, but better than nothing
= Fine-grained spinlocks and atomics, read/write locks and s
» Read-Copy-Update (RCU) is not a panacea for write-most
= Polling-based thread management

17 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

EEEES . TY .. -,
SDS development. Research #3

= Solutions
= Use a bio-based queue and develop your own bic
= Stay in the thread context

= Per-CPU and thread-aware architecture
= Develop your own lockless queue_work using kthreads

= Use non-blocking synchronization technigues
= Wait-free, Lock-free, Obstruction-free, Clash-free

= Parallel-Fastpath Design Patterns
= Fine-grained atomic CAS-based algorithms
= Fine-grained bitmaps and lockless lists for data access

18 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

EEEES . TY .. .
SDS development. Data services

= Multi-tenancy and noisy neighbor problem
= QoS
= Per-cpu/thread objects and RCU for read-mostly data
= Mapping for logical and physical extents (allocation tabl
= Per-cpu/thread reserved data areas with offsets
* |0 merge algorithms
= Per-cpu/thread trees for sequences and ranges

= Stripe cache
= Per-cpu/thread pools and reserved buffers

= Stripe access
= Fine-grained bitmaps and CAS-based ownership

= Journal and snapshots (copy-on-write, redirect-on-write
= Fine-grained bitmaps and reserved areas within consistenc

19 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

B . TY . W LA
SDS development. Results on RAM

4

Configuration
AMD EPYC 7742, 64 cores, 128 threads
RAM devices x24

Fedora Server 34, Linux Kernel 5.11 Stogl
SPDK v21.04
fio-3.26 stolid
I/O workload 4 KiB random read, QD=128 per drive

Results -

Kernel sto-v2 IOPS and latency are OK
md-raid5

MIOPS | Avg latency, usec | p99 latency, usec
RAM disks x24 47,9 64 87
md-raid0 11,6 264 375
md-raid5) 2050 2500
lvm 38,1 80 110
sto-vl 23,1 132 184
sto-v2 36,5 84 114

20 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

md-raid0

RAM disks x24

L . TY . W LA s
SDS development. Results on NVMe

’

Configuration
AMD EPYC 7742, 64 cores, 128 threads
NVMe SSDs x24, PCl-e 4.0

sto-v2
Fedora Server 34, Linux Kernel 5.11
SPDK v21.04 sto-vl
fio-3.26
I/O workload 4 KiB random read, QD=128 per drive spdk-raid0/Ivol
Results
Kernel sto-v2 IOPS and latency are OK lvm
Ready for SPDK
md-raid5 .
MIOPS | Avg latency, usec | p99 latency, usec
NVMe SSDs x24 | 25,6 120 154 md-raido0 _
md-raid0 9,3 330 440
md-raid5 1,4 2200 2600
lvm 25,3 121 159 NVMeSSEEERS
spdk-raid0/Ivol | 25,4 120 157
sto-vl 19,9 154 205 0]
sto-v2 25,2 121 160

21 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

B . TY . W LA
Summary. Kernel vs SPDK

= Linux kernel
= Easy to develop SDS, hard to get performance

= Lets you use whatever you want and helps you. But every me
will hurt you and waste millions of IOPS

= You have no right to make a mistake in a performance archite
= SPDK

= Hard to develop SDS, easy to get performance

= Requires lockless SDS design, event-driven, poll-based. But c
inefficient code and heavy algorithms

= You have the right to make a mistake
= Solution

= Non-blocking synchronization techniques and parallel-fastpat
issues in both Linux kernel and SPDK

22| ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage

Mistakes

23| ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

VY . T W LA T
Summary. Mistakes

= > We removed this potential bottleneck and didn’t notice
performance, probably not a problem

= Probably a much larger bottleneck hides the current bottleneck

= The performance optimization graph is not linear - the first bottle
second costs 10M, the third costs 5M, and so on

= > |t's just an i0 request counter
= Even one atomic variable for statistics/traces/QoS could waste f

= > If there are no problems on the flamegraph, there is no
= If you don’t have outliers - the whole code is equally slow

24 |1 ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

B . TY . W LA '
Summary. Mistakes #2

> Let’s optimize datapath but the background data service will nc
Performance optimization approach — all or nothing

The more efficiently a background data service uses CPU, the more re
datapath

> Let’s assign only a part of all CPU cores to datapath to free res
applications

The less resources the datapath uses, the less performance you get

The solution — per CPU datapath, per CPU data services (optional)
> Let’s balance datapath between CPU cores to get more perfor

Moving the io request to another CPU takes time, unlike handling in t

Balancing datapath between CPUs reduces system performance and
> Let’s limit the CPU usage

CPU usage by SDS depends on incoming data workload

If you limit the CPU usage, you limit the IOPS

25| ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

EEY . TY . s LA e
Summary. Mistakes #3

> \We develop in userspace and have no performa

No matter how you develop and run storage software -
storage node or SmartNIC/DPU

> \We don’t need high-performance processor for s
Don’t be sure you unleash the full hardware potential

> Let's not reinvent the wheel, use the generic syst
optimized
Don't be sure other developers are testing on multi-mil

26 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

B T Y ..
Summary. Evaluation

= Goal
= Researching performance bottlenecks using read-inte
= Unlocking the software potential on modern hardware
= Benchmarks

= Synthetic workloads vs real-world workloads
= Industry standards
= SPC-1, SPC-2, SNIA SSS PTS, SPECstorage Solution 20z

* Applying
= Single-node local storage for cloud-native applications
= Disaggregated storage for HPC using JBOF/EBOF

= Limitations
= PCle 4.0 x128, DDR4, Network

27| ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

L YT Y .,
What's next

= Multi-active software-defined storage for hype
composable disaggregated infrastructure

= SmartNIC/DPU integration
* Cloud-native API integration
= Open-source

28| ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Please take a moment to rate this session.

Your feedback is important to us.

STORAGE DEVELOPER CONFERENCE
29 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved. § S D @ E M EA

