
1 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved. 

Virtual Conference

June 8, 2021

Development of software-
defined storage engine for 
25 million IOPS

Dmitrii Smirnov, AOSTO



2 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Agenda

 Background
 Problem

 Challenge

 Software-defined storage solutions
 Overview

 Testing

 Research

 Software-defined storage development
 MVP

 Testing

 Research

 Results

 Linux kernel vs SPDK

 Mistakes

 Evaluation



3 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Background

 CPU
 AMD EPYC 2nd/3rd Gen with PCI-e 4.0

 Intel Xeon Ice Lake with PCI-e 4.0

 DPU
 NVIDIA BlueField-2 200G and BlueField-3 400G

 NVMe
 NVMe SSDs 1M+ IOPS and 6+ GiB/s

 Ethernet Bunch of Flash (EBOF)

 Network
 NVIDIA ConnectX-6 200G and ConnectX-7 400G

 Software
 Linux kernel 5.11

 Storage Performance Development Kit (SPDK)



4 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Problem

 Expectations

 Single-node storage platform with 24 NVMe SSDs could provide 
up to 24M IOPS or 100 GiB/s

 Reality

 single-node platform with 24 NVMe SSDs provides 10M IOPS

 2-node platform with 24 NVMe SSDs provides 20M IOPS

 4-node platform with 24 NVMe SSDs provides 24M IOPS

 Problems

 Existing solutions do not use the full performance potential of 
modern hardware, wasting millions of IOPS

 Dozens of inefficient storage nodes within cluster cause 
unnecessary infrastructure overgrowth

 Increased data center design complexity, deployment and 
maintenance costs



5 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Challenge

 Get the best performance from software-defined storage on 

modern hardware

 AMD CPU, PCI-e 4.0, NVMe SSDs x24

 Find SDS engine with 24M IOPS on random read

 Provide single-node block storage for HPC, AI/ML/DL, Data 

analytics and Databases

 Get ready for the future hyperscale software-defined data 

center solutions, both hyperconverged and composable

disaggregated infrastructure

 PCI-e 5.0, EBOF, multi-node storage



6 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage
Overview



7 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS solutions. Overview

 By data access
 block, file, object

 By deployment and architecture
 Single-node, multi-node

 Centralized, Hyperconverged, Composable Disaggregated

 SmartNIC/DPU-based

 Target-side, initiator-side

 By use case
 High-Performance Computing, Artificial Intelligence, Machine & Deep Learning, Real-time Analytics

 Media & Entertainment, Post production, Streaming

 Edge computing, Autonomous vehicles, 5G networks

 Open-source
 Linux MDRAID, Volume Manager (LVM)

 SPDK RAID, Volume Manager



8 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS solutions. Testing NVMe

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 NVMe SSDs x24, PCI-e 4.0

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel IOPS and latency are not OK

 SPDK is OK

 Research required

0 5 10 15 20 25 30

NVMe SSDs x24

md-raid0

md-raid5

lvm

spdk-raid0/lvol

MIOPS

MIOPS Avg latency, usec p99 latency, usec

NVMe SSDs x24 25,6 120 154

md-raid0 9,3 330 440

md-raid5 1,4 2200 2600

lvm 25,3 121 159

spdk-raid0/lvol 25,4 120 157



9 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS solutions. Research

 > Why only read-intensive workload for IOPS and latency metrics?
 Read-intensive workload shows potential performance and software bottlenecks, as opposed to write-intensive, 

which depends on drive health, garbage collector, journal, thin allocation, read-modify-write

 > Could we use high-performance SPDK RAID and Volume Manager for SDS?
 No RAID metadata

 Datapath (RAID, logical volumes) is not intended for cluster SDS

 Data services (thin provisioning, snapshots) are not intended for cluster SDS

 No local block device (optional requirement)

 > Why is kernel software performance so much worse than the actual NVMe SSDs performance?
 Existing kernel software is still heavy and is not CPU-friendly

 CPU - main resource for IOPS and latency performance

 «Is Parallel Programming Hard, And, If So, What Can You Do About It?», Paul E. McKenney

 > How validate the real performance potential of SDS?
 IOPS and latency testing on NULL or RAM devices



10 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS solutions. Testing RAM

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 RAM devices x24

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel IOPS and latency are not OK

 SDS development required

0 10 20 30 40 50 60

RAM disks x24

md-raid0

md-raid5

lvm

MIOPS

MIOPS Avg latency, usec p99 latency, usec

RAM disks x24 47,9 64 87

md-raid0 11,6 264 375

md-raid5 1,5 2050 2500

lvm 38,1 80 110



11 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage
Development



12 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. MVP

 Software-defined storage engine
 Datapath, RAID, volume manager, pool management, erasure coding, thin provisioning, 

rebuild, metadata, QoS

 Reconfiguration (level migration and scaling), journal, spare disk, spare (empty) block, 
snapshots, clones, compression, deduplication, ZNS support

 C programming

 Linux Kernel and SPDK support
 Without differences in the core and cluster logic, the same code and algorithms

 Kernel block device

 SPDK virtual bdev

 Maximum performance
 Read-intensive workload, IOPS and latency metrics



13 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Kernel vs SPDK

 Linux kernel

 Use cases

 User app needs local block device

 Filesystem in kernel

 Features

 Provides local block device

 No specific architecture requirements

 SPDK

 Use cases

 User app in userspace

 Filesystem in userspace

 Virtualization, SPDK vhost

 NVMe/TCP, NVMe/RDMA

 Features

 Can run in containers

 Requires lockless architecture for datapath
and data services

 SDS module - sto



14 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Testing NVMe

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 NVMe SSDs x24, PCI-e 4.0

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel sto-v1 IOPS are not OK

 Kernel sto-v1 latency is OK

 Research required

0 5 10 15 20 25 30

NVMe SSDs x24

md-raid0

md-raid5

lvm

spdk-raid0/lvol

sto-v1

MIOPS

MIOPS Avg latency, usec p99 latency, usec

NVMe SSDs x24 25,6 120 154

md-raid0 9,3 330 440

md-raid5 1,4 2200 2600

lvm 25,3 121 159

spdk-raid0/lvol 25,4 120 157

sto-v1 19,9 154 205



15 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Testing RAM

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 RAM devices x24

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel sto-v1 IOPS are not OK

 Kernel sto-v1 latency is OK

 Research required

0 10 20 30 40 50 60

RAM disks x24

md-raid0

md-raid5

lvm

sto-v1

MIOPS

MIOPS Avg latency, usec p99 latency, usec

RAM disks x24 47,9 64 87

md-raid0 11,6 264 375

md-raid5 1,5 2050 2500

lvm 38,1 80 110

sto-v1 23,1 132 184



16 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Research

Bottleneck search by disabling SDS components

 Datapath (fast path) disassembly

 Inline and background data services

 Logical allocation tables, parallel data access, stripe ownership, QoS and request counting

 Linux kernel block layer, thread and memory management

Bottleneck types

 Code problems

 Heaviness, using a lot of CPU resources per 1M IOPS

 Logic problems

 CPU or NVMe resources are not fully utilized, idling, scheduling



17 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Research #2

 General suggestions

 Do not use blk-mq or device-mapper for IOPS target, if it is not necessary

 Do not use block schedulers for IOPS target

 Avoid moving from current thread context even within the same NUMA-node and CPU

 Avoid abusing kmem_cache for a lot of wrappers

 Avoid kernel API with spinlocks and atomics inside

 kthread_queue_work, queue_work, wake_up_process, etc.

 Not recommended, but better than nothing

 Fine-grained spinlocks and atomics, read/write locks and semaphores

 Read-Copy-Update (RCU) is not a panacea for write-mostly and consistent data

 Polling-based thread management



18 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Research #3

Solutions

 Use a bio-based queue and develop your own bio merge algorithms

 Stay in the thread context

 Per-CPU and thread-aware architecture

 Develop your own lockless queue_work using kthreads API, if it is necessary

 Use non-blocking synchronization techniques

 Wait-free, Lock-free, Obstruction-free, Clash-free

 Parallel-Fastpath Design Patterns

 Fine-grained atomic CAS-based algorithms

 Fine-grained bitmaps and lockless lists for data access



19 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Data services

 Multi-tenancy and noisy neighbor problem
 QoS

 Per-cpu/thread objects and RCU for read-mostly data

 Mapping for logical and physical extents (allocation table)
 Per-cpu/thread reserved data areas with offsets

 io merge algorithms
 Per-cpu/thread trees for sequences and ranges

 Stripe cache
 Per-cpu/thread pools and reserved buffers

 Stripe access
 Fine-grained bitmaps and CAS-based ownership

 Journal and snapshots (copy-on-write, redirect-on-write)
 Fine-grained bitmaps and reserved areas within consistency groups



20 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Results on RAM

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 RAM devices x24

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel sto-v2 IOPS and latency are OK

0 10 20 30 40 50 60

RAM disks x24

md-raid0

md-raid5

lvm

sto-v1

sto-v2

MIOPS

MIOPS Avg latency, usec p99 latency, usec

RAM disks x24 47,9 64 87

md-raid0 11,6 264 375

md-raid5 1,5 2050 2500

lvm 38,1 80 110

sto-v1 23,1 132 184

sto-v2 36,5 84 114



21 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

SDS development. Results on NVMe

 Configuration

 AMD EPYC 7742, 64 cores, 128 threads

 NVMe SSDs x24, PCI-e 4.0

 Fedora Server 34, Linux Kernel 5.11

 SPDK v21.04

 fio-3.26

 I/O workload 4 KiB random read, QD=128 per drive

 Results

 Kernel sto-v2 IOPS and latency are OK

 Ready for SPDK

0 5 10 15 20 25 30

NVMe SSDs x24

md-raid0

md-raid5

lvm

spdk-raid0/lvol

sto-v1

sto-v2

MIOPS

MIOPS Avg latency, usec p99 latency, usec

NVMe SSDs x24 25,6 120 154

md-raid0 9,3 330 440

md-raid5 1,4 2200 2600

lvm 25,3 121 159

spdk-raid0/lvol 25,4 120 157

sto-v1 19,9 154 205

sto-v2 25,2 121 160



22 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Kernel vs SPDK

 Linux kernel
 Easy to develop SDS, hard to get performance

 Lets you use whatever you want and helps you. But every memory allocation or atomic variable 
will hurt you and waste millions of IOPS

 You have no right to make a mistake in a performance architecture

 SPDK
 Hard to develop SDS, easy to get performance

 Requires lockless SDS design, event-driven, poll-based. But does not punish you for atomics, 
inefficient code and heavy algorithms

 You have the right to make a mistake 

 Solution
 Non-blocking synchronization techniques and parallel-fastpath design patterns will fix all your 

issues in both Linux kernel and SPDK



23 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Software-Defined Storage
Mistakes



24 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Mistakes

 > We removed this potential bottleneck and didn’t notice an increase in 

performance, probably not a problem

 Probably a much larger bottleneck hides the current bottleneck

 The performance optimization graph is not linear - the first bottleneck costs 15M IOPS, the 

second costs 10M, the third costs 5M, and so on

 > It's just an io request counter

 Even one atomic variable for statistics/traces/QoS could waste from 1M to 15M IOPS

 > If there are no problems on the flamegraph, there is nothing to optimize

 If you don’t have outliers - the whole code is equally slow



25 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Mistakes #2

 > Let’s optimize datapath but the background data service will not
 Performance optimization approach – all or nothing

 The more efficiently a background data service uses CPU, the more resources remain for the 
datapath

 > Let’s assign only a part of all CPU cores to datapath to free resources for other 
applications
 The less resources the datapath uses, the less performance you get

 The solution – per CPU datapath, per CPU data services (optional)

 > Let’s balance datapath between CPU cores to get more performance
 Moving the io request to another CPU takes time, unlike handling in the current context

 Balancing datapath between CPUs reduces system performance and increases the io request latency

 > Let’s limit the CPU usage
 CPU usage by SDS depends on incoming data workload

 If you limit the CPU usage, you limit the IOPS



26 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Mistakes #3

 > We develop in userspace and have no performance issues

 No matter how you develop and run storage software - kernel or DPDK/SPDK, 

storage node or SmartNIC/DPU

 > We don’t need high-performance processor for software development

 Don’t be sure you unleash the full hardware potential

 > Let's not reinvent the wheel, use the generic system API and hope it is 

optimized

 Don't be sure other developers are testing on multi-million IOPS hardware



27 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

Summary. Evaluation

 Goal
 Researching performance bottlenecks using read-intensive workloads

 Unlocking the software potential on modern hardware

 Benchmarks
 Synthetic workloads vs real-world workloads

 Industry standards
 SPC-1, SPC-2, SNIA SSS PTS, SPECstorage Solution 2020, STAC-M3, IO-500

 Applying
 Single-node local storage for cloud-native applications

 Disaggregated storage for HPC using JBOF/EBOF

 Limitations
 PCIe 4.0 x128, DDR4, Network



28 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved.

What’s next

Multi-active software-defined storage for hyperconverged and 

composable disaggregated infrastructure

SmartNIC/DPU integration

Cloud-native API integration

Open-source



29 | ©2021 Storage Developer Conference EMEA ©. AOSTO. All Rights Reserved. 

Please take a moment to rate this session. 
Your feedback is important to us. 


