Gluster - Future Roadmap

- Atin Mukherjee @mukherjee_atin

May 2016

Some slides/content borrowed & stolen from: Jeff Darcy Luis Pabon Prasanna Kalever Vijay Bellur

- What is Gluster.Next?
- How Gluster.Next?
- Why Gluster.Next?
- When Gluster.Next?

Gluster.Next

What?

Gluster.Today

- Scale-out storage system
- Aggregates storage exports over network interconnects to provide an unified namespace
- File, Object, API and Block interfaces
- Layered on disk file systems that support extended attributes

Gluster.Today - Features

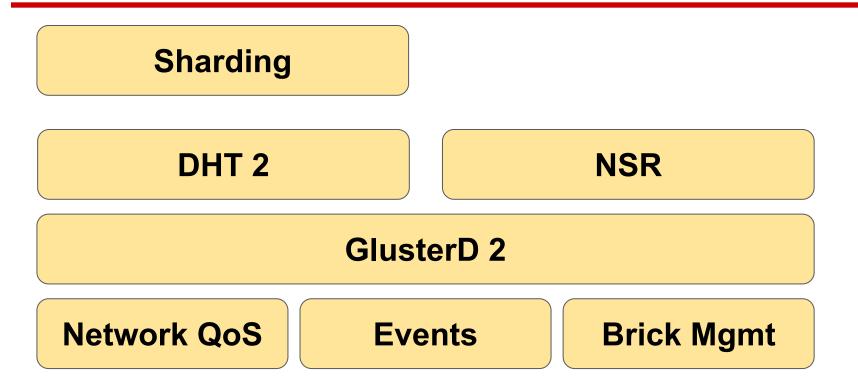
- Scale-out NAS
 - Elasticity, quotas
- Data Protection and Recovery
 - Volume Snapshots
 - Synchronous & Asynchronous Replication
 - Erasure Coding
- Archival
 - Read-only, WORM, bitrot detection
- Native CLI / API for management

Gluster.Today - Features

- Isolation for multi-tenancy
 - SSL for data/connection, Encryption at rest
- Performance
 - Data, metadata and readdir caching, tiering
- Monitoring
 - Built in io statistics, /proc like interface for introspection
- Provisioning
 - Puppet-gluster, gdeploy
- More..

What is Gluster.Next?

- Gluster.today
 - Client driven Distribution, Replication and Erasure Coding (with FUSE)
 - Spread across 3 100s of nodes
 - Geared towards "Storage as a Platform"


What is Gluster.Next?

- Gluster.Next
 - Architectural Evolution Spanning over multiple releases (3.8 & 4.0)
 - Scale-out to 1000s of nodes
 - Choice of Distribution, Replication and Erasure Coding on servers or clients
 - Geared towards "Storage as a Platform" and "Storage as a Service"
 - Native REsTful management & eventing for monitoring

Gluster.Next

How?

Gluster.Next - Main Components

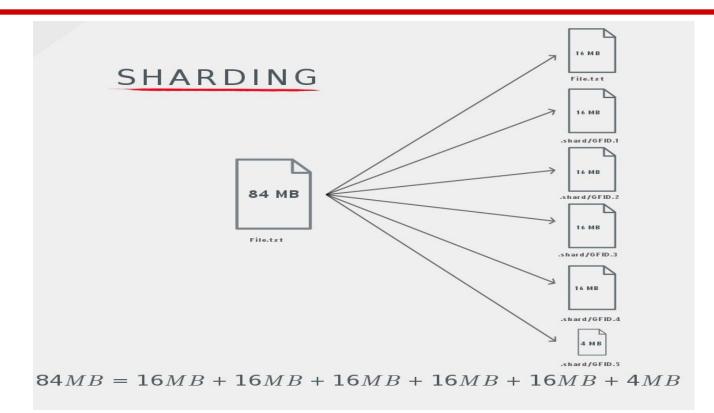
DHT 2

- Problem: directories on all subvolumes
 - directory ops can take O(n) messages
- Solution: each directory on <u>one</u> subvolume
 - can still be replicated etc.
 - each brick can hold data, metadata, or both
 - by default, each is both just like current Gluster

DHT 2 (continued)

- Improved layout handling
 - central (replicated) instead of per-brick
 - less space, instantaneous "fix-layout" step
 - layout generations help with lookup efficiency
- Flatter back-end structure
 - makes GFID-based lookups more efficient
 - good for NFS, SMB

NSR (JBR)

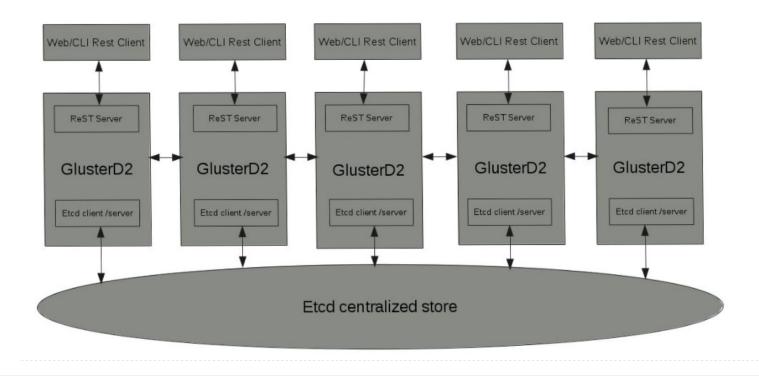

• Server-side with temporary leader

- \circ vs. client-side, client-driven
- can exploit faster/separate server network
- Log/journal based
 - can exploit flash/NVM ("poor man's tiering")
- More flexible consistency options
 - fully sync, <u>ordered</u> async, hybrids
 - can replace geo-replication for some use cases

Sharding

- Spreads data blocks across a gluster volume
- Primarily targeted for VM image storage
- File sizes not bound by brick or disk limits
- More efficient healing, rebalance and georeplication
- Yet another translator in Gluster

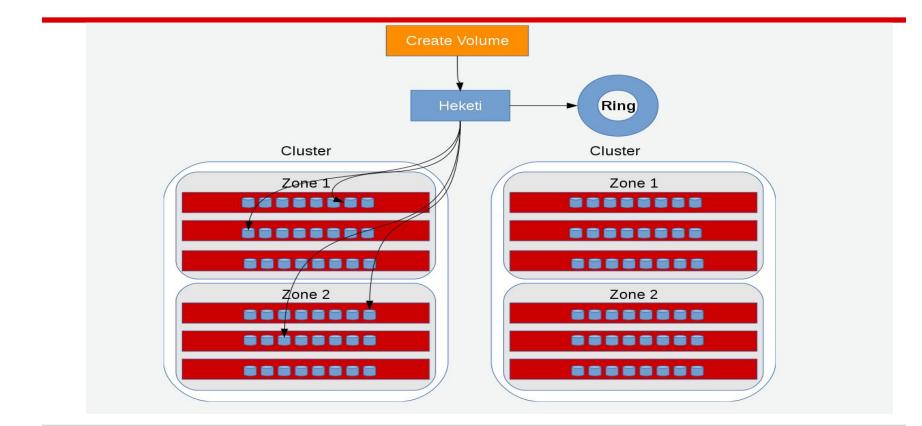
Sharding Illustrated


Network QoS

- Necessary to avoid hot spots at high scale
 - avoid starvation, cascading effects
- A single activity or type of traffic (e.g. self-heal or rebalance) can be:
 - directed toward a separate network
 - throttled on a shared network
- User gets to control front-end impact vs. recovery time

GlusterD2

- More efficient/stable membership
 - especially at high scale
- Stronger configuration consistency
- Modularity and plugins
- Exposes ReST interfaces for management
- Core implementation in Go

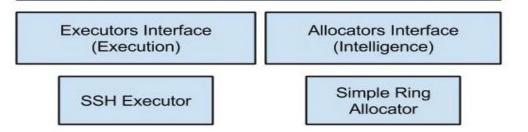

GlusterD2 - Architecture

Heketi

- Dynamic Share Provisioning with Gluster volumes
- Eases brick provisioning LVs, VGs, filesystem etc.
- Automatically determines brick locations for fault tolerance
- Exposes high level ReST interfaces for management
 - create share, expand share, delete share etc.

Heketi Illustrated

Heketi - Architecture


HTTP RESTful Framework

Framework Middleware (Authentication)

Framework App: GlusterFS

BoltDB

- HTTP Endpoint Handlers
- DB Models
- Volume, Brick, Node, and Device Management

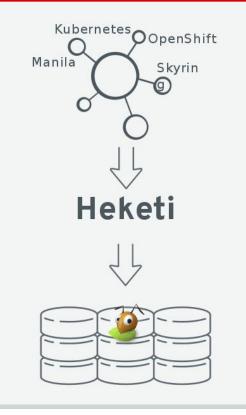
Event Framework

- Export node and volume events in a more consumable way
- Support external monitoring and management

Brick Management

- Multi-tenancy, snapshots, etc. mean more bricks to manage
 possibly exhaust cores/memory
- One daemon/process must handle multiple bricks to avoid contention/thrashing
 - core infrastructure change, many moving parts

Gluster.Next

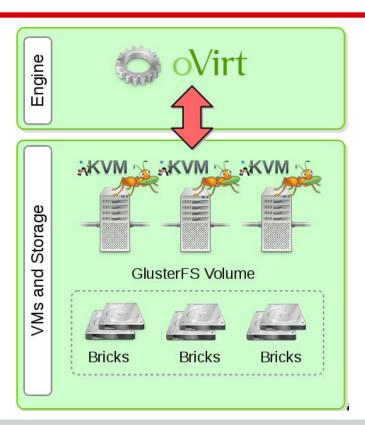

Why?

Why Gluster.Next?

- Paradigm Changes in IT consumption

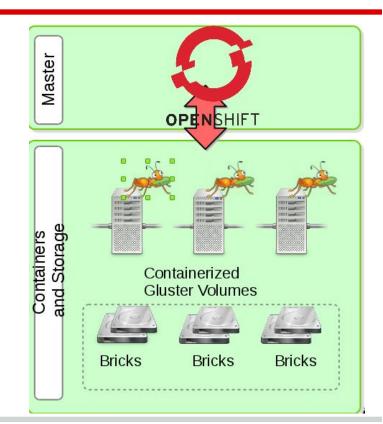
- Storage as a Service & Storage as a Platform
- Private, Public & Hybrid clouds
- New Workloads
 - Containers, IoT, <buzz-word> demanding scale
- Economics of Scale

Why Gluster.Next: StaaS


- User/Tenant driven provisioning of shares.
- Talk to as many Gluster clusters and nodes
- Tagging of nodes for differentiated classes of service
- QoS for preventing noisy neighbors

Why Gluster.Next: Containers

- Persistent storage for stateless Containers
 - Non-shared/Block : Gluster backed file through iSCSI
 - Shared/File: Multi-tenant Gluster Shares / Volumes
- Shared Storage for container registries
 - Geo-replication for DR
- Heketi to ease provisioning
 - "Give me a non-shared 5 GB share"
 - "Give me a shared 1 TB share"
- Shared Storage use cases being integrated with Docker, Kubernetes & OpenShift


Why Gluster.Next: Hyperconvergence with VMs

- Gluster Processes are lightweight
- Benign self-healing and rebalance with sharding
- oVirt & Gluster already integrated management controller
- geo-replication of shards
 possible!

Why Gluster.Next: Containers converged with OpenShift

- Server nodes are used both for containers and storage
- Containerized Gluster exports bind mounted directories from hosts
- Tenants consume volumes or sub-directories of volumes exported through FUSE

Gluster.Next

When?

Gluster.Next Phase 1

Gluster 3.8

- June 2016
- Stabilize Sharding
- Compound FOPs
- Improvements for NFS/SMB accesses
 - Leases, RichACLs, Mandatory Locks etc.
- UNIX-domain sockets for I/O
 - slight boost in hyperconverged setups

Gluster.Next Phase 2

Gluster 4.0

- May/June 2017
- Everything that we've discussed so far
- And more..

Other Stuff

- IPv6 support
- "Official" FreeBSD support
- Compression
- Code generation
 - reduce duplication, technical debt
 - ease addition of new functionality
- New tests and test infrastructure

Thank You!

Resources: <u>gluster-devel@gluster.org</u> <u>gluster-users@gluster.org</u>

http://twitter.com/gluster IRC: #gluster, #gluster-dev on Freenode