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Object Storage: Overview

 IDG: Unstructured data is growing at the rate of 62% per 

year.

 IDG: By 2022, 93% of all data in the digital universe was 

unstructured.

 Gartner: Data volume is set to grow 800% over the next 

5 years and 80% of it will reside as unstructured data.

Unstructured
Data Growth

 A proven option for effectively managing unstructured 

data.

 Storage architecture that manages data as objects

 A data container capable of storing files and metadata 

about the files, which consists of the attributes for the 

actual data being stored.

Object
Storage
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Object Storage: Overview

 Manage data in form of 

Container & Data Object 

 Flat address space

 Unique ObjectID

 HTTP/REST/SOAP

 CRUD

Characteristics

 Security and reliability

 Platform independence

 Scalability

 Manageability

 suitable for cloud 

environment

Advantages

REST API

Get/Put/Delete

Data Storage
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Major Object Storage APIs

* All Logos/Images are copyrighted to their respective companies.

 First publicly available web service

 Introduced and originally offered by Amazon Web Services

 Abbreviation for Simple Storage Service. 

 Supports REST, SOAP, and BitTorrent web services interfaces

 Bucket - fundamental container for data storage

 Object

– upto 5 TB in size, upto 2 KB of Metadata

– Key

o used to identify object 

o Unique within each bucket 

o user-assigned

o Unicode characters (UTF-8 encoding length 1024 bytes)

– version ID

o Used for Object Versioning

o S3 generates a unique version ID and assigns it to the object

 Requests are authorized using an access control list associated with each bucket and object.



6

Major Object Storage APIs

OpenStack Swift:

 OpenStack Object Store project

 OpenSource, Highly Scalable, Highly Available & Production ready project

 Supports REST web services interfaces

 Containers - Provide name space where object stored

 Object

– fundamental unit for data storage

– Support sixe upto 5Gb

 Pseudo-Hierarchical Directories

– Doesn’t support nested Containers

– To manage huge number of object pseudo- hierarchical directories can be created.

 Object Versioning

– Each PUT request to an object will result in the existing object being archived to a 
special “versions” container.

 Authentication

– OpenStack Keystone

– Flexible enough to integrate with other authentication mechanism

* All Logos/Images are copyrighted to their respective companies.
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Major Object Storage APIs

SNIA CDMI:

 Introduced by SNIA (Storage Networking Industry Association)

 Abbreviation for Cloud Data Management Interface

 CDMI Specification defines functional interface for object storage that application can use to 
create, retrieve, update and delete data elements from the Cloud

 Foster Interoperability to avoid Vendor Lock-in

 An open international (ISO) standard 

 Provide support for REST APIs

 Data Management:

 Data is stored and managed using Containers and Data Objects.

 Data Objects are identified by user assigned name and system assigned Object ID.

 Object IDs are globally unique and native format of an object ID is a variable length 
byte sequence and shall be a maximum length of 40 bytes

 Supports Capability object that used to discover cloud storage offerings and 
functionalities.

 Authentication:

– relies on an authentication service (local or external) to validate client credentials.

– Supports following authentication methods

o Anonymous/Basic/Digest/Kerberos

o Certificate-based authentication via TLS

o S3 API signed header authentication

o OpenStack Identity API header authentication

* All Logos/Images are copyrighted to their respective companies.
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Why Interoperability is critical??

Data Lock-in
01

Seamless Adoptability
02

Focus on enterprise level feature
03

Market Pace
04

Agility and flexibility
05
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Testing - Challenges and Best Practices

Challenge Best Practice

Interoperability Support
 Does product support interoperability among 

different object APIs
 Check for any other alternative or work around 

in which Object APIs can be interoperable.

 Otherwise, This solution is not applicable for 
such products.

Object API - Authentication Method
 Different Object API supports different 

authentication method. 
 Prepare reusable components/methods for each 

object API authentication scheme

 Check for any common authentication 
supported by Product

Large object support
 Different Object API supports different size for 

large objects e.g. 5TB for S3 and 5GB for 
OpenStack Swift

 Check for any alternative option/support for 
larger object size e.g. in OpenStack Swift larger 
object than 5 GB are supported using 
Segment/Manifest object.

 Check for these alternatives support in Product, 
to be tested.
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Testing - Challenges and Best Practices (Contd..)

Challenge Best Practice

Same feature but Different 
implementation : Object Versioning

 In OpenStack Swift, older copies of Objects are 
kept in a particular container, while in S3 all  
versions are kept in same bucket only, with new 
versionID created on each update. 

 Needs to be tested very carefully, to check if 
request is being diverted properly to correct 
container/bucket url in order to access 
particular version.

Unique Feature- Nested Containers
 CDMI allows nested containers to be created, 

but S3/Swift doesn’t. 
 Nested Containers to be mapped with Pseudo-

Hierarchical directory 
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Object APIs Cross Functionality Testing - Test Cases

 Simple Test Cases

– Covers CRUD operations only

 Medium Test Cases

– Covers medium level features such as CRUD with Metadata, Object 

Versioning etc.

 Complex Test Cases

– Covers complex features such as Retention policies, large object etc.

Test Case 
Classification 

(Based on 
complexity)
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Object APIs Cross Functionality Testing - Test Cases

Simple Test Cases
CDMI and OpenStack Swift APIs Cross Functionality testing

PUT (CDMI)

GET/PUT/DELETE
(Swift)

Container Storage

PUT (SWIFT)

GET/PUT/DELETE
(CDMI)

Container Storage

Figure: 1

Figure: 2

Figure:1

Test Case#1: 
Create a container using Swift APIs 
and Retrieve through CDMI 

Test Case#2: 
Create a container using Swift APIs 
and Delete through CDMI

Test Case#3: 
Create a container using Swift APIs 
and Update through CDMI

Container Object

Figure:2

Test Case#4:
Create a container using CDMI APIs 
and Retrieve through Swift

Test Case#5:
Create a container using CDMI APIs 
and Update through Swift 

Test Case#6:
Create a container using CDMI APIs 
and Delete through Swift
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Figure:3
Test Case#7:
Create a Container/Data Object 
us ing Swift APIs and Retrieve 
through CDMI

Test Case#8: 

Create a Container/Data Object 
us ing Swift APIs and Update 
through CDMI

Test Case#9: 
Create a Container/Data Object 

us ing Swift APIs and Delete through 
CDMI

Data Object

Figure:4
Test Case#10: 
Create a Container/Data Object 
us ing CDMI APIs and Retrieve 
through Swift 

Test Case#11: 

Create a Container/Data Object 
us ing CDMI APIs and Update 
through Swift

Test Case#12: 
Create a Container/Data Object 

us ing CDMI APIs and Delete through 
Swift

Object APIs Cross Functionality Testing - Test Cases

Simple Test Cases
CDMI and OpenStack Swift APIs Cross Functionality testing

PUT (CDMI)

GET/PUT/DELETE
(Swift)

Data Object Storage

PUT (SWIFT)

GET/PUT/DELETE
(CDMI)

Data Object Storage

Figure: 3

Figure: 4
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Test Case#13: 
Create a Container using CDMI APIs and create Data object within CDMI Container 
through Swift

Test Case#14: 
Create a Container using Swift APIs and create Data object within Swift Container 
through CDMI

Test Case#15: 
Create a Container (Swift API)/Data Object (CDMI) and read Data object through Swift 
API

Data Object

Object APIs Cross Functionality Testing - Test Cases

Simple Test Cases
CDMI and OpenStack Swift APIs Cross Functionality testing
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Sample Test Cases

<Test Case : Start>

 Generate and save authentication token “SWIFT_AUTH_TOKEN” for Swift using OpenStack Keystone 
or supported authentication service.
curl –X POST –H “Content-Type: application/json” –d ‘{“auth” : {“tenantName”: “XXX”, 
“passwordCredentials” : {“username”: “XXX”, “password”: “XXX”}}}’ AUTH_URL

 Create a container named "TestContainer1“ using swift API
curl –X PUT –H “Content-Length: 0” –H “X-Auth-Token: $SWIFT_AUTH_TOKEN” 
$SWIFT_URL/TestContainer1

 Veri fy i f container created successfully using swift API:
curl –X GET –H “X-Auth-Token: $SWIFT_AUTH_TOKEN” $SWIFT_URL/TestContainer1
Check for HTTP s tatus code: 200 OK returned

 Set va l id login credentials for CDMI request.

 Retrieve Container created in above step using CDMI API:
GET <CDMI_URL>/TestContainer1/ HTTP/1.1
Host: cloud.example.com

Accept: application/cdmi-container

X-CDMI-Specification-Version: 1.0.2

 Veri fy response code:
Check for HTTP s tatus code: 200 OK returned.

 Expected Result: Container "TestContainer1" should be created and retrieved successfully.

 Cleanup created container

<Test Case : End>

Description

TestCase#1

Test Case Name

Create a Container using Swift API and Retrieve 
the same through CDMI

Test Case Description

 Product must support interoperability 
between OpenStack Swift and CDMI APIs

 Swift Service End-Point (SWIFT_URL)

 CDMI Service End-Point (CDMI_URL)

Pre-Test Dependencies
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Sample Test Cases

<Test Case : Start>

 Generate and save authentication token “SWIFT_AUTH_TOKEN” for Swift using OpenStack Keystone 

or supported authentication service.
curl –X POST –H “Content-Type: application/json” –d ‘{“auth” : {“tenantName”: “XXX”, 

“passwordCredentials” : {“username”: “XXX”, “password”: “XXX”}}}’ AUTH_URL

 Create a container named "TestContainer1“ using swift API

curl –X PUT –H “Content-Length: 0” –H “X-Auth-Token: $SWIFT_AUTH_TOKEN” 

$SWIFT_URL/TestContainer1

 Veri fy i f container created successfully using swift API:

curl –X GET –H “X-Auth-Token: $SWIFT_AUTH_TOKEN” $SWIFT_URL/TestContainer1
Check for HTTP s tatus code: 200 OK returned

 Set va l id login credentials for CDMI request.

 Delete Container, created in above step, using CDMI API:
DELETE <CDMI_URL>/TestContainer1/ HTTP/1.1

Host: cloud.example.com

X-CDMI-Specification-Version: 1.0.2

 Veri fy response code:
Check for HTTP s tatus code: 204 No Content returned.

 Expected Result: Container "TestContainer1" should be created and deleted successfully.

<Test Case : End>

Description

TestCase#2

Test Case Name

Create a Container using Swift API and Delete 
the same through CDMI

Test Case Description

 Product must support interoperability 
between OpenStack Swift and CDMI APIs

 Swift Service End-Point (SWIFT_URL)

 CDMI Service End-Point (CDMI_URL)

Pre-Test Dependencies
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