
1
| Copyright © 2016 Tata Consultancy Services Limited

How to enable cross functionality testing for multiple cloud
storage APIs such as CDMI, OpenStack Swift and Amazon S3

31 May 2016

Ankit Agrawal
SPE Group, Hitech ISU

TCS

2

Focal Points of Discussion

Object Storage: Overview

Major Object Storage APIs

Products supporting multiple Object APIs

Why Interoperability is critical??

Testing - Challenges and Best Practices

Object APIs Cross Functionality Testing - Test Cases

3

Object Storage: Overview

 IDG: Unstructured data is growing at the rate of 62% per

year.

 IDG: By 2022, 93% of all data in the digital universe was

unstructured.

 Gartner: Data volume is set to grow 800% over the next

5 years and 80% of it will reside as unstructured data.

Unstructured
Data Growth

 A proven option for effectively managing unstructured

data.

 Storage architecture that manages data as objects

 A data container capable of storing files and metadata

about the files, which consists of the attributes for the

actual data being stored.

Object
Storage

4

Object Storage: Overview

 Manage data in form of

Container & Data Object

 Flat address space

 Unique ObjectID

 HTTP/REST/SOAP

 CRUD

Characteristics

 Security and reliability

 Platform independence

 Scalability

 Manageability

 suitable for cloud

environment

Advantages

REST API

Get/Put/Delete

Data Storage

5

Major Object Storage APIs

* All Logos/Images are copyrighted to their respective companies.

 First publicly available web service

 Introduced and originally offered by Amazon Web Services

 Abbreviation for Simple Storage Service.

 Supports REST, SOAP, and BitTorrent web services interfaces

 Bucket - fundamental container for data storage

 Object

– upto 5 TB in size, upto 2 KB of Metadata

– Key

o used to identify object

o Unique within each bucket

o user-assigned

o Unicode characters (UTF-8 encoding length 1024 bytes)

– version ID

o Used for Object Versioning

o S3 generates a unique version ID and assigns it to the object

 Requests are authorized using an access control list associated with each bucket and object.

6

Major Object Storage APIs

OpenStack Swift:

 OpenStack Object Store project

 OpenSource, Highly Scalable, Highly Available & Production ready project

 Supports REST web services interfaces

 Containers - Provide name space where object stored

 Object

– fundamental unit for data storage

– Support sixe upto 5Gb

 Pseudo-Hierarchical Directories

– Doesn’t support nested Containers

– To manage huge number of object pseudo- hierarchical directories can be created.

 Object Versioning

– Each PUT request to an object will result in the existing object being archived to a
special “versions” container.

 Authentication

– OpenStack Keystone

– Flexible enough to integrate with other authentication mechanism

* All Logos/Images are copyrighted to their respective companies.

7

Major Object Storage APIs

SNIA CDMI:

 Introduced by SNIA (Storage Networking Industry Association)

 Abbreviation for Cloud Data Management Interface

 CDMI Specification defines functional interface for object storage that application can use to
create, retrieve, update and delete data elements from the Cloud

 Foster Interoperability to avoid Vendor Lock-in

 An open international (ISO) standard

 Provide support for REST APIs

 Data Management:

 Data is stored and managed using Containers and Data Objects.

 Data Objects are identified by user assigned name and system assigned Object ID.

 Object IDs are globally unique and native format of an object ID is a variable length
byte sequence and shall be a maximum length of 40 bytes

 Supports Capability object that used to discover cloud storage offerings and
functionalities.

 Authentication:

– relies on an authentication service (local or external) to validate client credentials.

– Supports following authentication methods

o Anonymous/Basic/Digest/Kerberos

o Certificate-based authentication via TLS

o S3 API signed header authentication

o OpenStack Identity API header authentication

* All Logos/Images are copyrighted to their respective companies.

8

Why Interoperability is critical??

Data Lock-in
01

Seamless Adoptability
02

Focus on enterprise level feature
03

Market Pace
04

Agility and flexibility
05

9

Testing - Challenges and Best Practices

Challenge Best Practice

Interoperability Support
 Does product support interoperability among

different object APIs
 Check for any other alternative or work around

in which Object APIs can be interoperable.

 Otherwise, This solution is not applicable for
such products.

Object API - Authentication Method
 Different Object API supports different

authentication method.
 Prepare reusable components/methods for each

object API authentication scheme

 Check for any common authentication
supported by Product

Large object support
 Different Object API supports different size for

large objects e.g. 5TB for S3 and 5GB for
OpenStack Swift

 Check for any alternative option/support for
larger object size e.g. in OpenStack Swift larger
object than 5 GB are supported using
Segment/Manifest object.

 Check for these alternatives support in Product,
to be tested.

10

Testing - Challenges and Best Practices (Contd..)

Challenge Best Practice

Same feature but Different
implementation : Object Versioning

 In OpenStack Swift, older copies of Objects are
kept in a particular container, while in S3 all
versions are kept in same bucket only, with new
versionID created on each update.

 Needs to be tested very carefully, to check if
request is being diverted properly to correct
container/bucket url in order to access
particular version.

Unique Feature- Nested Containers
 CDMI allows nested containers to be created,

but S3/Swift doesn’t.
 Nested Containers to be mapped with Pseudo-

Hierarchical directory

11

Object APIs Cross Functionality Testing - Test Cases

 Simple Test Cases

– Covers CRUD operations only

 Medium Test Cases

– Covers medium level features such as CRUD with Metadata, Object

Versioning etc.

 Complex Test Cases

– Covers complex features such as Retention policies, large object etc.

Test Case
Classification

(Based on
complexity)

12

Object APIs Cross Functionality Testing - Test Cases

Simple Test Cases
CDMI and OpenStack Swift APIs Cross Functionality testing

PUT (CDMI)

GET/PUT/DELETE
(Swift)

Container Storage

PUT (SWIFT)

GET/PUT/DELETE
(CDMI)

Container Storage

Figure: 1

Figure: 2

Figure:1

Test Case#1:
Create a container using Swift APIs
and Retrieve through CDMI

Test Case#2:
Create a container using Swift APIs
and Delete through CDMI

Test Case#3:
Create a container using Swift APIs
and Update through CDMI

Container Object

Figure:2

Test Case#4:
Create a container using CDMI APIs
and Retrieve through Swift

Test Case#5:
Create a container using CDMI APIs
and Update through Swift

Test Case#6:
Create a container using CDMI APIs
and Delete through Swift

13

Figure:3
Test Case#7:
Create a Container/Data Object
us ing Swift APIs and Retrieve
through CDMI

Test Case#8:

Create a Container/Data Object
us ing Swift APIs and Update
through CDMI

Test Case#9:
Create a Container/Data Object

us ing Swift APIs and Delete through
CDMI

Data Object

Figure:4
Test Case#10:
Create a Container/Data Object
us ing CDMI APIs and Retrieve
through Swift

Test Case#11:

Create a Container/Data Object
us ing CDMI APIs and Update
through Swift

Test Case#12:
Create a Container/Data Object

us ing CDMI APIs and Delete through
Swift

Object APIs Cross Functionality Testing - Test Cases

Simple Test Cases
CDMI and OpenStack Swift APIs Cross Functionality testing

PUT (CDMI)

GET/PUT/DELETE
(Swift)

Data Object Storage

PUT (SWIFT)

GET/PUT/DELETE
(CDMI)

Data Object Storage

Figure: 3

Figure: 4

14

Test Case#13:
Create a Container using CDMI APIs and create Data object within CDMI Container
through Swift

Test Case#14:
Create a Container using Swift APIs and create Data object within Swift Container
through CDMI

Test Case#15:
Create a Container (Swift API)/Data Object (CDMI) and read Data object through Swift
API

Data Object

Object APIs Cross Functionality Testing - Test Cases

Simple Test Cases
CDMI and OpenStack Swift APIs Cross Functionality testing

15

Sample Test Cases

<Test Case : Start>

 Generate and save authentication token “SWIFT_AUTH_TOKEN” for Swift using OpenStack Keystone
or supported authentication service.
curl –X POST –H “Content-Type: application/json” –d ‘{“auth” : {“tenantName”: “XXX”,
“passwordCredentials” : {“username”: “XXX”, “password”: “XXX”}}}’ AUTH_URL

 Create a container named "TestContainer1“ using swift API
curl –X PUT –H “Content-Length: 0” –H “X-Auth-Token: $SWIFT_AUTH_TOKEN”
$SWIFT_URL/TestContainer1

 Veri fy i f container created successfully using swift API:
curl –X GET –H “X-Auth-Token: $SWIFT_AUTH_TOKEN” $SWIFT_URL/TestContainer1
Check for HTTP s tatus code: 200 OK returned

 Set va l id login credentials for CDMI request.

 Retrieve Container created in above step using CDMI API:
GET <CDMI_URL>/TestContainer1/ HTTP/1.1
Host: cloud.example.com

Accept: application/cdmi-container

X-CDMI-Specification-Version: 1.0.2

 Veri fy response code:
Check for HTTP s tatus code: 200 OK returned.

 Expected Result: Container "TestContainer1" should be created and retrieved successfully.

 Cleanup created container

<Test Case : End>

Description

TestCase#1

Test Case Name

Create a Container using Swift API and Retrieve
the same through CDMI

Test Case Description

 Product must support interoperability
between OpenStack Swift and CDMI APIs

 Swift Service End-Point (SWIFT_URL)

 CDMI Service End-Point (CDMI_URL)

Pre-Test Dependencies

16

Sample Test Cases

<Test Case : Start>

 Generate and save authentication token “SWIFT_AUTH_TOKEN” for Swift using OpenStack Keystone

or supported authentication service.
curl –X POST –H “Content-Type: application/json” –d ‘{“auth” : {“tenantName”: “XXX”,

“passwordCredentials” : {“username”: “XXX”, “password”: “XXX”}}}’ AUTH_URL

 Create a container named "TestContainer1“ using swift API

curl –X PUT –H “Content-Length: 0” –H “X-Auth-Token: $SWIFT_AUTH_TOKEN”

$SWIFT_URL/TestContainer1

 Veri fy i f container created successfully using swift API:

curl –X GET –H “X-Auth-Token: $SWIFT_AUTH_TOKEN” $SWIFT_URL/TestContainer1
Check for HTTP s tatus code: 200 OK returned

 Set va l id login credentials for CDMI request.

 Delete Container, created in above step, using CDMI API:
DELETE <CDMI_URL>/TestContainer1/ HTTP/1.1

Host: cloud.example.com

X-CDMI-Specification-Version: 1.0.2

 Veri fy response code:
Check for HTTP s tatus code: 204 No Content returned.

 Expected Result: Container "TestContainer1" should be created and deleted successfully.

<Test Case : End>

Description

TestCase#2

Test Case Name

Create a Container using Swift API and Delete
the same through CDMI

Test Case Description

 Product must support interoperability
between OpenStack Swift and CDMI APIs

 Swift Service End-Point (SWIFT_URL)

 CDMI Service End-Point (CDMI_URL)

Pre-Test Dependencies

17

References

https://en.wikipedia.org/wiki/Amazon_S3

http://www.scality.com/ring/object-storage-overview/

https://www.cleversafe.com/company/news-events/press-releases/cleversafe-simplifies-object-
storage-deployment-with-new-features-and-partnerships

https://india.emc.com/collateral/white-papers/h14071-ecs-architectural-guide-wp.pdf

https://en.wikipedia.org/wiki/Amazon_S3
http://www.scality.com/ring/object-storage-overview/
https://www.cleversafe.com/company/news-events/press-releases/cleversafe-simplifies-object-storage-deployment-with-new-features-and-partnerships
https://india.emc.com/collateral/white-papers/h14071-ecs-architectural-guide-wp.pdf

Thank You

IT Services
Business Solutions
Consulting

