Programming and Usage
Models for Non-volatile Memory

Priya Sehgal
MTS, Advanced Technology Group, NetApp

SDC India
26t May 2016

1l NetApp

Agenda

= Overview
= SNIA NVM Programming Model and Ecosystem

= File System Changes for NVM
= Existing — Linux (ext4)
= New — PMFS, BPFS

= NVM Library — libpmem example

2 i NetApp

Non-Volatile Memory Technology

» Persistent memory
» Short Access Speeds
» Byte Addressable

STT-MRAM,
3D XPoint (on DDR)?
R/W (ns/ns)

NAND SSD
R/W (us/us)

3 © 2016 NetApp, Inc. All rights reserved " NetApp

Implications to Software

= Persistence: Volatility a Virtue!

= Application or OS panics because of an illegal/wrong persistent memory

address
= Ensure durability
= Ensure ordering

= Fast Access Speed
= Software Stack overhead

= Byte Addressable
= Block-oriented softwares
= Can leverage Load/Store

[Caulfield, MICRO *10]

4

25

= N
(O} o

[y
o

Latency (us)

Hardware costs
. m PCM

-* Ring
|

m Wait
¥ Interrupt

M Issue
= Copy

[

I

—
— —— m Schedule
m OS/User

Base

i NetApp

Roadblocks to Persistence

MOV

Core Core Core

Memory Controller Memory Controller

NVDIMM

5 i NetApp

Instruction Level Support

MOV
Core Core Core
B (L) CL)
=D)} =0

CLFLUSH,
____ CLFLUSHOPT,
CLWB
e
Memory Memory
Controller Controller PCOMMIT

NVDIMM

6 i NetApp

NVM Prog. Ecosystem

7 © 2016 NetApp, Inc. Al rights reserved. - NETAPP CONFIDENTIAL - n NetApp

SNIA NVM Programming Model

[Application j [Application]

A
NVM.FILE mode Native file
User space AP' ______________________________________
‘Kermelspace [WMWY
[File system]
NVM.BLOCK mode}\ I
\ 4
[NVM block capable driver]
NVM device NVM device

yww.snia.org/sites/default/files/N Progra ingMode RA pd
8 © 2016 NetApp, Inc. Al rights reserved i NetApp

SNIA NVM Programming Model

(Application]

Native file Load/ T
User space API store I
__ pm====-
e NVM.PM.FILE mod e]vv\/vvvvvvvvwvv\/\}vv\/

Famu
[PM-aware kernel module] [PM-aware file system) ,\I‘apping;
|
A

NVM.PM.VOLUME mode}\

I
I
I
I
(NVM PM capable driver) |
I
I
Y

AN

PM device PM device PM device

PM devicg

9 i NetApp

Ecosystem Overview

Application
A A A Intel STM
Compiler
read/ read/ read/
write write write

mmap mmap

user
kernel l
Direct to PM Direct to PM
ext4 PMFS (XIP/DAX) (region manager)
Block 1/0 load/store

\ 4 \ 4 \ 4 \ 4 \ 4
Emulated Persistent Memory (via DRAM)

10 © 2016 NetApp, Inc. Al rights reserved. - NETAPP CONFIDENTIAL - n NetApp

File System Changes

11 © 2016 NetApp, Inc. Al rights reserved. - NETAPP CONFIDENTIAL - n NetApp

Intel’'s PMFS

= Design Goals
= Efficient access to PM by apps
= Optimize for byte addressability
= Protect from stray writes

= Contributions

= Remove block layer and page
cache - Enable direct access to PM
via XIP (DAX)

= Supports large pages
= Atomic in-place update to metadata

= Provides crash consistency
= Fine grained undo logging
= Leverage write-protect in kernel

) ltation.cfm?id=25928
12

PM (in physical address space

Dmec‘tor)Em} |_

T Inode Newl"xle File

/

3 | 3 |PMES-Loz _ PMES Data Pages .
~— : —
| | File System Root
/ ¥
g B-Tree
= Pointers
2
L
:2 K
3 i]: N Pagea
k-)
\ K

F.

I
ﬂ_

for New File ~

1
Directory File

——

Da'ta File

i NetApp

Microsoft's BPFS

Ensures file system consistency guarantees

Use copy-on-write up to root of file system

Problem:
= Any change requires bubbling to the FS root
= Small writes result in large copy overhead

Solution:

= Uses Short-Circuit Shadow Paging
= Adopt in-place and/or atomic update when possible
= Uses byte-addressability and atomic 64b writes

13

i NetApp

Problem with CoW (Shadow Paging)

Any small change results in large copy overhead

file’s root pointer ?\ unnecessary copies

/
~

«

SN VAR

A’ B’

14 i NetApp

Short-Circuit Shadow Paging

* |In-place update when possible — save on copies

= Appends committed by updating the file size

file’s root pointer F
in-place update

/
SN VAR

A’ B’

15

i NetApp

Linux File System Support

= Direct Access for Files (DAX)

= Bypass page cache
= Perform read/write directly to the storage device — Synchronous

= Support from block driver

* direct access
= Examples: brd — RAM backed block device driver

= Support from File System
= Direct_IO functions — dax do io()

= Implementing mmap file operations for DAX files
= Page fault functions

= Examples: ext2, ext4

16 i NetApp

Traditional vs. Optimized File Systems

[User Applications
Ilbpmlem mmap-io file-io file-io Ilbpn|1em
mmap-io ‘ mmap-io
Kernel
DAX Traditional [VES }
| Traditional FS with-(out) DAX ||
I 1 [Memory-based
b FS mmu
DAX + (PMFS) mappings
[Page Cache]

. [Block Device with-(out) DAX support |

Block IO

Load/store

Load/store

[

Non-volatile Memory (NVM)

17

NVM Library

18 © 2016 NetApp, Inc. Al rights reserved. - NETAPP CONFIDENTIAL - n NetApp

NVM Library

= library for using memory-mapped persistence, specifically for PM
= Supports SNIANVM API
= Builds on Linux DAX

= Provides a collection of libraries:

= libpmem: low-level persistent memory support — persistent memory instructions
for flushing changes to PM.

= |libpmemlog: pmem-resident log file (uses libpmem)
= libpmemobj: transactional object store (uses libpmem)
= And many more

* Link: http://pmem.io/nvml/libpmem/

19 i NetApp

Example using libpmem

/* create a pmem file */

if ((fd = open("/pmem-fs/myfile", O CREAT|O RDWR, 0666)) < 0) {
perror ("open");
exit(1);

}

/* allocate the pmem */

posix fallocate(fd, 0, PMEM LEN))

/* memory map it */
if ((pmemaddr = pmem map(£fd)) == NULL) Force changes to NVM
perror ("pmem map");
exit(1l);

} Flush processor caches

/* store a string to e persistent

Wait for h/w buffers to drain

dr, "hello agairi, persistent memory.");
M LEN);

strcpy (pmema
pmem flush (pmemaddr
pmem drain();

s

20 © 2016 NetApp, Inc. All rights reserved “ NetApp

Summary

= Scratching the surface = more research going on areas such as
remote memory access, security, etc.

= Existing software (without changes) on NVM would result in:
= Sub-optimal performance
= Consistency/Durability issues

= Usage Models
= NVM Block Device w/ existing/modified file systems or direct access
= NVM File Systems on NVM Driver
= NVM Library (talks to NVM Filesystem) — libpmem

= Persistent Memory Regions and Persistent heap
= Manage using memory management unit
= APIs: pmap, punmap, pmalloc, pfree
= E.g., Mnemosyne, NV-Heaps

21 i NetApp

Thank you.

22 i NetApp

References

BPFS: http://research.microsoft.com/pubs/81175/BPFS.pdf

[Caulfield, MICRO ‘“10]: Moneta: A High-performance Storage Array Architecture for Next-generation, Non-volatile Memories,
Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, and Steven Swanson, MICRO 43

Intel Manual: https://software.intel.com/sites/default/files/managed/b4/3a/319433-024.pdf

[libpmem]: http://pmem.io/nvml/libpmem/

Linux DAX: https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Mnemosyne: http://research.cs.wisc.edu/sonar/papers/mnemosyne-asplos2011.pdf

NV-Heaps: http://www.msr-waypoint.com/pubs/198372/Asplos2011_NVHeaps.pdf

PMFS: http://dl.acm.org/citation.cfm?id=2592814

SNIA NVM Programming TWG: www.snia.org/sites/default/files/NVMProgrammingModel_v1r10DRAFT_0.pdf

23 © 2016 NetApp, Inc. Al rights reserved. - NETAPP CONFIDENTIAL - n NetApp

