

iSER as Accelerator for Software Defined Storage

Subhojit Roy and Tej Parkash Storage Engineering

Agenda

- Key Requirement for Software Defined Storage (SDS)
- Current state of Fiber Channel
- RDMA over Ethernet
- Emergence of iSCSI and iSER (iSCSI Extension for RDMA)
- iSER vs others protocols
- IBM Spectrum Virtualize
- Considerations and challenges in iSER adoption

SDS and its key requirements

- SDS: Virtualized storage with a service management interface, considering software and hardware independence. Criteria are:
 - > Standard interfaces: APIs for management, provisioning and maintenance of storage devices and services
 - ➤ Virtualized data path: Block, File and/or Object interfaces that support applications written to these interfaces
 - Commodity hardware: Software should run on off-the-shelves hardware
 - > Scalability: Ability to scale storage infrastructure without disruption to specified availability or performance
 - Support for new age workload
 - Converged networking: Same network could carry both compute and storage data

What's happening to Fiber Channel?

Fibre Channel block storage access is fine but.....

- > Flash Storage is driving the need for next generation network speeds to fully utilize its capabilities
- Clients prefer Ethernet speeds and converged infrastructure for Cloud economy
- Fiber Channel is behind in the speed war 32Gb is expected in 2017 while 40G Ethernet already has \$200M revenue today
- Gartner predicts declining FC port counts at 2% to 5% annually and flattening sales

iSCSI adoption is significant

- ➤ iSCSI has become the fastest growing interconnect method for network storage systems and growing at 6.4% CAGR between 2013 to 2018 compare to Fibre Channel which is increasing only by 2.7% CAGR
- Key to iSCSI growth are
 - Lower cost for storage network infrastructure
 - DCBx introduces enterprise capabilities
 - Cloud data centers pushing10 Gigabit Ethernet proliferation.
 - Linux, VMware and Microsoft support iSCSI

Installation (\$ billion)	2011	2012	2013	2014	2015	2016	2017	2018	CAGR % (13-18)
Fibre Channel	11.80	12.50	12.60	12.90	13.30	13.70	14.00	14.40	2.7
iSCSI	3.30	3.50	3.40	3.70	3.90	4.20	4.40	4.70	6.4

Emergence of Ethernet Storage

Revenue Growth

- Proliferation of 10Gb iSCSI
- > Rapid transition to 40Gb! In 2016 end 40G total revenue will be 1/4th of 10Gb
- DCBx enabled Ethernet fabric enables QOS & reliable data transfer necessary for storage

25G Standards

- Promises minor increment in cost to move from 10Gb to 25Gb.
- Lower power consumption, network consolidation, scales to 50/100Gb easily
- Hyperscale data center architectures like Google and Facebook are lured by the promise of higher bandwidths and lower costs

Server and Storage network convergence

- Ethernet supports converged infrastructure for cloud vendors that use block, file, object and distributed scale out storage
- Wikibon predicts server SAN (compute and storage over converged network) will grow 44.2% CAGR

Emergence of Ethernet Storage contd.

Multitenancy support

- QoS enabled by DCBx networking standards
- IPSec provides for strong authentication & data confidentiality

Ecosystem evolution

- Cloud adoption drives Ethernet ecosystem adoption due to economic benefits
- LAN on Motherboard (LOM) makes Ethernet adoption simpler & less expensive
- Major switch vendors adopting higher bandwidths DCBx standards and quickly

Why RDMA OVER ETHERNET

Application Performance

- Low CPU utilization leaves space for more applications per server.
- > Allows bandwidth utilization to scale higher to i.e. 25/40/50/100 Gb speeds

RDMA drives down latencies

- Fully Zero copy (Reads and Writes)
- Kernel bypass
- Very low latencies
- RDMA is mature technology

ISER: Confluence of iSCSI & RDMA modify

- iSER is iSCSI with a RDMA data path
- Requires no changes to SAM-2/3 and uses iSCSI RFC with minimal changes to realize iSER
- Network protocol independence: iWARP, RoCE, Infiniband
 - Common OFED stack
- Leverages existing knowledge of iSCSI administration & ecosystem on servers and storage

iSER vs Fibre channel

Feature/Protocol	iSER	Fibre Channel
Read Latency	15-25us	25-35us
Bandwidths	10/25/40/50/100 Gb	8/16/32(?) Gb
CPU Utilization	Low	Low
Security	Authentication, Confidentiality, Integrity	Integrity
Ownership cost	Low	Medium - High
Market	Growing rapidly and evolving	Mature and stable
Workloads	Cloud, Analytics, Enterprise	Enterprise

iSER: Fiber Channel benefits minus the additional costs

iSER vs Other Ethernet Storage Protcols

	iSER	SRP	FCoE
Management	iSCSI based	NA	FC Based
RDMA	Yes	Yes	No
Physical Networks	Ethernet and Infiniband	Infiniband	Ethernet Only
os	Linux/VMware/BSD	Linux	Linux/VMware/BSD
Security	Authentication, Confidentiality (IPSec), Integrity	Unknown	Integrity only
Scalability	High (runs on DCBx enabled switches)	Unknown	Low (until BB6 takes hold)
Routability	Yes	No	No
Ecosystem	Rapidly evolving	Not growing	Slow movement on BB6

iSER is ahead of other Ethernet based technology

Ever EXPANDING ecosystem for iSER

HCA

OS

Storage

Switch

iSER ecosystem growing with more cloud and enterprise adoption

iSER for Software Defined Storage

	iSER	FC
Run on commodity hardware		×
Runs on converged networking technology		×
Scalable		
High Performance		
Driven by new age workloads Flash Cloud Big Data		×

iSER qualifies for more SDS criteria

What do we do?

Network Storage Virtualization – IBM Spectrum Virtualize

- SAN Volume Controller (SVC) and Storwize platforms
- Block Storage Target for servers
- Block Storage Initiator for storage
- > SCSI
- Attach to diverse hosts: Linux, Windows, VMWare etc.
- Virtualize storage from vendors: IBM, Hitachi, EMC etc.
- Workloads Enterprise, Cloud...
 - Traditionally connected over Fiber Channel (structured data)
 - iSCSI (Ethernet) gaining momentum (cloud)

CONSIDERATIONS

- We are both Initiator and target
- Storage Virtualization stack is in user space
- > Fast memory registration available mainly through kernel ib verbs
- Match or exceeds Fiber Channel (FC) latencies & CPU utilization
- Use vendor independent Fast memory registration technique (OFED)
- Must work with iWARP, RoCE (v1 and v2) and Infiniband

CHALLENGES

- Reduce latency of Memory Registration for initiator
- Data transfers from Scattered physical memory

THANK YOU

