
1
| Copyright © 2017 Tata Consultancy Services Limited

How to ensure OpenStack Swift & Amazon S3 Conformance for
storage products & services supporting multiple Object APIs

Ankit Agrawal

Tata Consultancy Services Ltd.

30 May 2017

2

Focal Points of Discussion

1 Object Storage: Overview

2 Object Storage APIs: Overview

3 Conformance Testing Approach

4 Sample Test Cases

3

Object Storage: Overview (1/2)

Unstructured Data Growth

 What is Unstructured Data?

 Why Unstructured Data is growing massively?

 Unstructured Data Growth Report

 Why Unstructured Data is so important?

4

Object Storage: Overview (1/2)

Why Object Storage for Unstructured Data

 Limitless Scalability

 Runs on Commodity Hardware

 Highly Available

 Anytime / Anywhere access

 Flat address space

 Unique ObjectID

 Manageability

REST API

Get/Post/Put/Delete

Data Object Storage

5

Click to edit Master title styleObject Storage APIs: Overview

 Object Storage APIs ?

 Why Amazon S3 & OpenStack Swift ?

 Why Conformance to S3 & Swift is critical ?

6

Conformance Testing Approach

1. OpenStack Swift

2. Amazon S3

7

Conformance Testing Approach

 Supports the REST API

 Supports Token Based Authentication

8

Conformance Testing Approach

Discoverability Operations Endpoints Operations: Operations on the Accounts

 GET /info

 lists the activated capabilities

 GET /v1/endpoints

 List endpoints

Show account details and list
containers

 GET /v1/{account}

Create, update, or delete account
metadata

 POST /v1/{account}

Show account metadata

 HEAD /v1/{account}

9

Conformance Testing Approach

Operations on the Containers Operations on the Objects

Show container details and list objects

 GET /v1/{account}/{container}

Create container

 PUT /v1/{account}/{container}

Create, update, or delete container metadata

 POST /v1/{account}/{container}

Show container metadata

 HEAD /v1/{account}/{container}

Delete container

 DELETE /v1/{account}/{container}

Get object content and metadata

 GET /v1/{account}/{container}/{object}

Create or replace object

 PUT /v1/{account}/{container}/{object}

Copy object

 COPY /v1/{account}/{container}/{object}

Delete object

 DELETE /v1/{account}/{container}/{object}

Show object metadata

 HEAD /v1/{account}/{container}/{object}

Create or update object metadata

 POST /v1/{account}/{container}/{object}

10

Figure: 1
Test Case#1:
Show container details and list objects

Test Case#2:
Show container details and list objects
for container that does not exist

Test Case#3:
Create a Container using Swift API

Test Case#4:
Create a Container using custom
metadata

Test Case#5:
Delete container metadata

Test Case#6:
Show container metadata

Test Case#7:
Create a container with an ACL to
allow anybody to get an object in the
particular container

Test Case#8:
Delete an empty Container

Test Case#9:
Delete a Container that does not exist.

Test Case#10:
Delete a non-empty Container

Test Cases:
OpenStack Swift APIs - Container Operations

Container Storage

POST/PUT/

GET/DELETE

Sample Test Cases

Container

11

Object

Test Case#1:
Show object details for the particular
object in the particular container

Test Case#2:
Show object details for the object,
which does not exist, in the particular
container

Test Case#3:
Create object using Swift API

Test Case#4:
Update existing Object.

Test Case#5:
Copy existing object from one
container to other

Test Case#6:
Create object metadata

Test Case#7:
Show object metadata

Test Case#8:
Update object metadata

Test Case#9:
Copy non-existing object from one
container to other

Test Case#10:
Delete existing object from the
particular container

Test Case#11:
Delete non-existing object from the
particular container

Test Case#12:
Delete static large object (segments &
manifest object)

Test Cases:
OpenStack Swift APIs - Object Operations

Sample Test Cases

Figure: 2

Object Storage

POST/PUT/

GET/DELETE

12

Conformance Testing Approach

1. OpenStack Swift

2. Amazon S3

13

Conformance Testing Approach

 Current Version: 2006-03-01

 Supports the REST APIs

 Authentication - AWS Signature Version 4 Algorithm

 Authentication Methods

 HTTP Authorization header

 Query string parameters

14

Conformance Testing Approach

Common Request Headers Common Response Headers

 Authorization

 Content-Length

 Content-Type

 Content-MD5

 Date

 Expect

 Host

 x-amz-content-sha256

 x-amz-date

 x-amz-security-token

 Content-Length

 Content-Type

 Connection

 Date

 Etag

 Server

 x-amz-delete-marker

 x-amz-id-2

 x-amz-request-id

 x-amz-version-id

15

Conformance Testing Approach

Operations on the Service

GET Service:

 Returns a list of all buckets owned by the
authenticated sender of the request.

 URI: GET /

16

Conformance Testing Approach

Operations on the Buckets
(Create/Update)

Operations on the Buckets
(Retrieve)

PUT Bucket

 creates a new bucket

PUT Bucket accelerate

 set the Transfer Acceleration state of an existing
bucket to enable to perform faster data transfers

PUT Bucket acl

 to set the permissions on an existing bucket using
access control lists (ACL)

PUT Bucket inventory

 adds an inventory configuration (identified by the
inventory ID) to the bucket.

PUT Bucket cors

 Sets the cors configuration for your bucket

GET Bucket (List Objects)

 returns some or all (up to 1,000) of the objects in a
bucket.

GET Bucket accelerate

 return the Transfer Acceleration state of a bucket,
which is either Enabled or Suspended.

GET Bucket acl

 return the access control list (ACL) of a bucket

GET Bucket inventory

 returns an inventory configuration (identified by
the inventory configuration ID) from the bucket.

GET Bucket cors

 Returns the cors configuration information set for
the bucket.

17

Conformance Testing Approach

Operations on the Buckets (Delete)

DELETE Bucket

 deletes the bucket named in the URI.

DELETE Bucket inventory

 deletes an inventory configuration
(identified by the inventory configuration
ID) from the bucket

DELETE Bucket cors

 Deletes the cors configuration
information set for the bucket.

18

Conformance Testing Approach

Operations on Objects
(Create)

Operations on Objects
(Retrieve)

PUT Object

 adds an object to a bucket.

PUT Object - Copy

 creates a copy of an object that is already stored

PUT Object acl

 Uses the acl subresource to set the access control
list (ACL) permissions for an object that already
exists in a bucket.

PUT Object tagging

 uses the tagging subresource to add a set of tags
to an existing object.

GET Object

 retrieves objects from Amazon S3.

GET Object ACL

 uses the acl subresource to return the access
control list (ACL) of an object.

GET Object tagging

 returns the tags associated with an object.

GET Object torrent

 uses the torrent subresource to return torrent files
from a bucket.

19

Conformance Testing Approach

Operations on Objects
(Delete)

Operations on Objects
(Others)

Delete Multiple Objects

 delete multiple objects from a bucket using a
single HTTP request.

DELETE Object

 removes the null version (if there is one) of an
object

 If versioning enabled, permanently deletes the
version

DELETE Object tagging

 uses the tagging subresource to remove the entire
tag set from the specified object.

HEAD Object

 retrieves metadata from an object without
returning the object itself.

 retrieve metadata from a different version, use the
versionId subresource.

OPTIONS Object

 A browser can send this preflight request to
Amazon S3 to determine if it can send an actual
request with the specific origin, HTTP method, and
headers.

20

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using
Secret Access Key and AWS Signature Version 4 Algorithm.

 Create a bucket named "TestBucket1“ using Amazon S3 API
PUT / HTTP/1.1
Host: TestBucket1.cloud.example.com
Content-Length: 0
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AUTH_SIGNATURE

 Verify if bucket “TestBucket1” created successfully:
Check for HTTP status code: 200 OK returned
Location header should be: /TestBucket1
x-amz-id-2 and x-amz-request-id should be returned

 “GET /TestBucket1” should run successfully.

 Expected Result: Bucket "TestBucket1" should be created successfully.

 Clean-up: Delete bucket “TestBucket1”

<Test Case : End>

Description

TestCase#1

Test Case Name

Create a new Bucket using Amazon S3
compatible APIs

Test Case Description

 Secret Access Key for Authentication

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

21

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using
Secret Access Key and AWS Signature Version 4 Algorithm.

 Create bucket TestBucket1 <<Refer: TestScript#1>> and add objects to it.

 List all objects contained in bucket "TestBucket1“, using Amazon S3 API
GET /?list-type=2 HTTP/1.1
Host: TestBucket1.cloud.example.com
x-amz-date: 20160430T233541Z
Authorization: AUTH_SIGNATURE
Content-Type: text/plain

 Verify if bucket “GET /TestBucket1” executed successfully:
Check for HTTP status code: 200 OK returned
Response Body should list all objects contained in TestBucket1

 Expected Result: All objects contained in bucket "TestBucket1“ should be listed
successfully.

 Clean-up: Delete bucket “TestBucket1”

<Test Case : End>

Description

TestCase#2

Test Case Name

List Objects contained in bucket
“TestBucket1” successfully.

Test Case Description

 Secret Access Key for Authentication

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

22

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using
Secret Access Key#1 and AWS Signature Version 4 Algorithm.

 Create a bucket named "TestBucket1“ using Amazon S3 API
PUT / HTTP/1.1
Host: TestBucket1.cloud.example.com
Content-Length: 0
x-amz-acl: private
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AUTH_SIGNATURE

 Verify if bucket “TestBucket1” created successfully using Amazon S3 API:
Check for HTTP status code: 200 OK returned
Location header should be: /TestBucket1
x-amz-id-2 and x-amz-request-id must be returned

 Try to read bucket “GET /TestBucket1” using Access Key#2 <<Refer: TestCase#2>>, it
should return Error Code AccessDenied (403 Forbidden)

 Expected Result: Bucket "TestBucket1" should be created successfully.

 Clean-up: Delete bucket “TestBucket1”

<Test Case : End>

Description

TestCase#3

Test Case Name

Create a new bucket and configure access
permission using a canned ACL

Test Case Description

 Secret Access Key#1 for Account#1 and
Secret Access Key#2 for Account#2

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

23

TestCase#4

Test Case Name

Delete an existing bucket

Test Case Description

 Secret Access Key for Authentication

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using
Secret Access Key and AWS Signature Version 4 Algorithm.

 Create bucket TestBucket1 <<Refer: TestScript#1>>

 Delete bucket named "TestBucket1“ using Amazon S3 API
DELETE / HTTP/1.1
Host: TestBucket1.cloud.example.com
Date: Wed, 01 Mar 2006 12:00:00 GMT
Authorization: AUTH_SIGNATURE

 Verify if bucket “TestBucket1” deleted successfully:
Check for HTTP status code: 204 No Content returned
x-amz-id-2 and x-amz-request-id must be returned

 Try to read bucket “GET /TestBucket1”, it should return Error Code NoSuchBucket
(404 Not Found)

 Expected Result: Bucket "TestBucket1" should be deleted successfully.

<Test Case : End>

Description

24

Sample Test Cases

<Test Case : Start>

 Compute and save authentication signature in “AUTH_SIGNATURE” variable using

Secret Access Key and AWS Signature Version 4 Algorithm.

 Create a bucket named "TestBucket1“ using Amazon S3 API

PUT / HTTP/1.1

Host: TestBucket1.cloud.example.com

Content-Length: 0

Date: Wed, 01 Mar 2006 12:00:00 GMT

Authorization: AUTH_SIGNATURE

 Verify if bucket “TestBucket1” created successfully:

Check for HTTP status code: 200 OK returned

Location header should be: /TestBucket1

x-amz-id-2 and x-amz-request-id should be returned

 “GET /TestBucket1” should run successfully.

 Expected Result: Bucket "TestBucket1" should be created successfully.

 Clean-up: Delete bucket “TestBucket1”

<Test Case : End>

Description

TestCase#5

Test Case Name

Create a new Bucket using Amazon S3
compatible APIs

Test Case Description

 Secret Access Key for Authentication

 Object Storage End-Point (cloud.example.com)

Pre-Test Dependencies

25

Questions?

Thank You

IT Services
Business Solutions
Consulting

studioppt I 05 I 2017

Email: ankit29.a@tcs.com

mailto:ankit29.a@tcs.com

