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Image Processing Example (CNN)

Capture - Face detection
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Image Processing — Overview |

= The easiest way to understand a convolution is by thinking
of it as a sliding window function applied to a matrix. It
becomes quite clear looking at a visualization:
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= The sliding window is called a kernel, filter, or feature
detector. Here we use a 3x3 filter, multiply its values
element-wise with the original matrix, then sum them up.
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Image Processing — Overview Il
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Pixel representation of filter Visualization of a curve detector filter

https://adeshpande3.github.io/adeshpande3.github.io/A-
Beginner's-Guide-To-Understanding-Convolutional-Neural-
Networks/
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Stock Prediction Example (RNN and LSTM)
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Stock Market Example - Process

hidden, z(t)
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Person-Movie Relationship — RBM/Autoenc

___M1_[M2 [M3 M4 M5 M6 M7 _|M8_
P1 1 1 1
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P4 1 1
P5 1
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SVD (Matrix representation)
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RBM

Weighted Inputs Combine @Hidden Node

visible hidden activation
layer layer function
input
+b s / =3

https://deeplearning4j.or
g/restrictedboltzmmannma
chine
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NLP Example
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= Term Frequency, Inverse Document Frequency - tfidf
= Word Representation

= One hot: [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]

= Vector Representation and Cosine Similarity

_M

Familiarity  0.90 0.02 0.02
Wealth 0.90 0.99 0.5 0.5
Gender
Other Attr

= Word2Vec

P(w;|h) = softmax(score(w;, h))
B exp{score(w, h)}
EWurd w' in Vocab EXP{SCDTE(WI= h}}
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Prefetching
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Vector Representation example
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= Physical location of block
= File it belongs to

= User who owns the file

= Creation time

. A i
= Access time LA
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Use Cases
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= VM Migration
= PreCopy and Post Copy

= PostCopy results in network fault and copies faulted data. Also
prefetches pages

= Vector representation — Pages belonging to schedulable
processes

= Tiering
= Block movement between Tiers
= Predicting blocks to be accessed in near future
= NFS - 4.2 has application hint for caching
= Cache or no cache

= No application intelligence
Local FS — Read ahead size
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Capacity/Performance
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Use cases
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= Power Consumption in Data Center — Historical Power

consumption Data, CPU Memory Utilization, I0/Network
Workload

= Performance Modelling and Prediction inter-arrival time,
and sequential-scan run-length, queue time, seek and
rotational latency, transfer time, sequential/random,
read/write ratio — CART (Classification and Regression
Tree) model

= Parameter selection — additive and subtractive
= CART model - CUT points are chosen
= RBM to get latent features - subsequent regression can find the metric

© 2016 WIPROLTD | WWW.WIPRO.COM | CONFIDENTIAL



18

Predictive Failure
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Use cases
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“Recently, LSTM autoencoders and encoder-decoder
frameworks have been used as reconstruction

models where some form of reconstruction error is used as
a measure of anomaly. The idea behind such models is:
autoencoder is trained to reconstruct the normal time-series
and it is assumed that such a model would do badly to
reconstruct the anomalous time-series having not seen
them during training.”
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Miscellaneous
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Parameters
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= Load Balancing — some of the parameters
= Latency
= Response Time
= Reject connection count

= Generalized Resource Management
= Protocol Detection
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