

Deep Learning in Storage

Champak Kumar Dutta, Subhendu Banerjee

Senior Architect

© 2016 WIPRO LTD | WWW.WIPRO.COM | CONFIDENTIAL

Deep Learning Applications in IT

Deep Learning Applications in Storage

Deep Learning Applications

IT - General

Image Processing Example (CNN)

Image Processing – Overview I

The easiest way to understand a convolution is by thinking of it as a sliding window function applied to a matrix. It becomes quite clear looking at a visualization:

The sliding window is called a kernel, filter, or feature detector. Here we use a 3×3 filter, multiply its values element-wise with the original matrix, then sum them up.

Image Processing – Overview II

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Stock Prediction Example (RNN and LSTM)

© 2016 WIPRO LTD | WWW.WIPRO.COM | CONFIDENTIAL

Stock Market Example - Process

Person-Movie Relationship – RBM/Autoenc

	M1	M2	M3	M4	M5	M6	M7	M8
P1	1	1	1					
P2		1						
P3			1					
P4				1	1			
P5						1		
P6							1	

Person to Model, Model to Person, Model Strength SVD (Matrix representation)

 $A = U\Sigma V^T$

where U is an $m \times m$ orthogonal matrix¹ whose columns are the eigenvectors of AA^T , V is an $n \times n$ orthogonal matrix whose columns are the eigenvectors of A^TA , and Σ is an $m \times n$ diagonal matrix of the form

$$\Sigma = \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r & & \\ & & 0 & & \\ & 0 & & \ddots & \\ & & & & 0 \end{pmatrix}$$

RBM

NLP Example

- Term Frequency, Inverse Document Frequency tfidf
- Word Representation
 - One hot: [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]
 - Vector Representation and Cosine Similarity

	King	Queen	Man	Woman
Familiarity	0.90	0.9	0.02	0.02
Wealth	0.90	0.99	0.5	0.5
Gender				
Other Attr				

Word2Vec

$$egin{aligned} P(w_t|h) &= ext{softmax}(ext{score}(w_t,h)) \ &= rac{ ext{exp}\{ ext{score}(w_t,h)\}}{\sum_{ ext{Word w' in Vocab}} ext{exp}\{ ext{score}(w',h)\}} \end{aligned}$$

Deep Learning Applications

IT - Storage

Prefetching

Vector Representation example

- Physical location of block
- File it belongs to
- User who owns the file
- Creation time
- Access time

- VM Migration
 - PreCopy and Post Copy
 - PostCopy results in network fault and copies faulted data. Also prefetches pages
 - Vector representation Pages belonging to schedulable processes
- Tiering
 - Block movement between Tiers
 - Predicting blocks to be accessed in near future
- NFS 4.2 has application hint for caching
 - Cache or no cache
 - No application intelligence

Local FS – Read ahead size

Capacity/Performance

- Power Consumption in Data Center Historical Power consumption Data, CPU Memory Utilization, IO/Network Workload
- Performance Modelling and Prediction inter-arrival time, and sequential-scan run-length, queue time, seek and rotational latency, transfer time, sequential/random, read/write ratio – CART (Classification and Regression Tree) model
 - Parameter selection additive and subtractive
 - CART model CUT points are chosen
 - RBM to get latent features subsequent regression can find the metric

Predictive Failure

Use cases

"Recently, LSTM autoencoders and encoder-decoder frameworks have been used as reconstruction models where some form of reconstruction error is used as a measure of anomaly. The idea behind such models is: autoencoder is trained to reconstruct the normal time-series and it is assumed that such a model would do badly to reconstruct the anomalous time-series having not seen them during training."

Miscellaneous

Parameters

- Load Balancing some of the parameters
 - Latency
 - Response Time
 - Reject connection count
- Generalized Resource Management
 - Protocol Detection

References

http://web.cs.iastate.edu/~cs577/handouts/svd.pdf

https://www.slideshare.net/ananth/word-representation-svd-lsaword2vec

http://ieeexplore.ieee.org/document/7576472/

https://www.quora.com/How-do-I-use-LSTM-Networks-for-timeseries-anomaly-detection

Champak, Subhendu Senior Architect <u>champak.dutta@wipro.com</u> <u>subhendu.banerjee1@wipro.com</u>

