
1

© 2017 IBM Corporation

Alluxio - CAPI Flash Integration for Big Data Frameworks

Kavana N Bhat & Shajith Chandran

Power Systems, IBM

2

© 2017 IBM Corporation

Big Data Ecosystem Today

3

© 2017 IBM Corporation

Alluxio (formerly Tachyon)

 Memory Speed Virtual Distributed Storage

 Enables Virtualized Data Across Multiple Types of Storage

4

© 2017 IBM Corporation

Why use Alluxio?

Spark Job

Spark mem

Hadoop MR Job

YARN

HDFS / Amazon S3

HDFS

disk

block 1

block 3

block 2

block 4

Alluxio

in-memory Data

Data survive in memory

after computation

crashes

Off-heap storage, no GC

Memory-speed data sharing across

jobs and frameworks

5

© 2017 IBM Corporation

Storage Tier Hierarchy

Faster

Higher

Capacity

6

© 2017 IBM Corporation

Automatic Data Migration

 Data can be evicted to lower layers if it is “cooling down”

 Data can be promoted to upper layers if it is “warming up”

7 © 2017 IBM Corporation 7

CAPI: Coherent Accelerator Processor Interface

8

© 2017 IBM Corporation

Typical I/O Model Flow:

Flow with a Coherent Model:

Shared Mem.

Notify Accelerator
Acceleration

Shared Memory

Completion

DD Call
Copy or Pin

Source Data

MMIO Notify

Accelerator
Acceleration

Poll / Interrupt

Completion

Copy or Unpin

Result Data

Ret. From DD

Completion

Application

Dependent, but

Equal to below

Application

Dependent, but

Equal to above

300 Instructions 10,000 Instructions 3,000 Instructions
1,000 Instructions

1,000 Instructions

7.9µs 4.9µs

Total ~13µs for data prep

400 Instructions 100 Instructions

0.3µs 0.06µs

Total 0.36µs

9

© 2017 IBM Corporation

 Modify Alluxio to use the new user-level CAPI Flash block APIs

 Requires changes to Alluxio

 Alluxio-specific Implementation

 Non-reusable

 Create a User-Space Filesystem for CAPI Flash

 Generic Implementation

 Provides standard interfaces for file operations - No changes to Alluxio

10

© 2017 IBM Corporation

 The userspace filesystem is primarily contained in a library(libcflsh_usfs), that runs on top of the

CAPI flash block library API.

 Provides analogs of all major filesystem APIs (open, close, read, write, aio_read, aio_write etc).

 Provides wrapper layer that allows applications to work without modifications with use of the

library preload feature.
 Wrapper intercepts filesystem calls from libc intended for libcflsh_usfs and routes them internally.

11

© 2017 IBM Corporation

Su
p

er P
ip

e I/O

PHYP/Hardware

Kernel Space

User Space

CAPI Flash

Block Library
Alluxio

with CAPI

CAPI Flash Adapter

Alluxio with

Traditional IO

VFS

Filesystem

Disk Driver

User

space FS

Alluxio with CAPI USFS

12

© 2017 IBM Corporation

Alluxio Performance with CAPI

Alluxio with Traditional FS on Flash

13

© 2017 IBM Corporation

Alluxio Performance with CAPI

Alluxio with CAPI USFS on Flash

14

© 2017 IBM Corporation

 Alluxio Project: www.alluxio.org

 IBM CAPI: http://ibm.biz/powercapi

 IBM CAPI User Space Block Library: https://github.com/open-power/capiflash

 What is CAPI?
 http://lt.be.ibm.com/stg/ltu48342

 For Partners:

http://www.ibm.com/services/weblectures/dlv/partnerworld/ltu48850

 SuperVessel Website: https://ptopenlab.com/cloudlabconsole/#/

 Contact: kavana.bhat@in.ibm.com, shajithchandran@in.ibm.com

15

© 2017 IBM Corporation

Questions?

16

© 2017 IBM Corporation

Thank You

17

© 2017 IBM Corporation 17

© 2015 IBM Corporation

Memory Subsystem

Virt Addr

What was done before CAPI?

POWER8

Core

POWER8

Core

POWER8

Core

POWER8

Core

POWER8

Core

POWER8

Core

App

FPGA
PCIE

Variables Input

Data

DD

Device Driver

Storage Area

Variables

Input

Data

Variables

Input

Data

Output

Data

Output

Data

Prior to CAPI, an application called a device driver to utilize an

FPGA Accelerator.

The device driver performed a memory mapping operation.

3 versions of the data (not coherent).

1000s of instructions in the device driver.

18

© 2017 IBM Corporation 18

© 2015 IBM Corporation

Memory Subsystem

Virt Addr

CAPI Coherency

POWER8

Core

POWER8

Core

POWER8

Core

POWER8

Core

POWER8

Core

POWER8

Core
App

FPGA
PCIE

With CAPI, the FPGA shares memory with the cores

P
S

L

Variables
Input

Data

Output

Data

1 coherent version of the data.

No device driver call/instructions.

19

© 2017 IBM Corporation 19

© 2015 IBM Corporation

Typical I/O Model Flow:

Flow with a Coherent Model:

Shared Mem.

Notify Accelerator
Acceleration

Shared Memory

Completion

DD Call
Copy or Pin

Source Data

MMIO Notify

Accelerator
Acceleration

Poll / Interrupt

Completion

Copy or Unpin

Result Data

Ret. From DD

Completion

Application

Dependent, but

Equal to below

Application

Dependent, but

Equal to above

300 Instructions 10,000 Instructions 3,000 Instructions
1,000 Instructions

1,000 Instructions

7.9µs 4.9µs

Total ~13µs for data prep

400 Instructions 100 Instructions

0.3µs 0.06µs

Total 0.36µs

CAPI vs. I/O Device Driver: Data Prep

20

© 2017 IBM Corporation

PCIe

How
CAPI
Works

Algorithm Algo m rith

POWER8 Processor

Acceleration Portion:

Data or Compute Intensive,

Storage or External I/O

Application Portion:

Data Set-up, Control

Sharing the same memory space

Accelerator is a peer to POWER8 Core

CAPI Developer Kit Card

21

© 2017 IBM Corporation

FPGA

POWER8

 Core

C
A

P
P

P

C
Ie

CAPI technology connections

• Proprietary hardware to enable
coherent acceleration

• Operating system enablement

• Ubuntu LE

• Libcxl function calls

• Customer application and accelerator

• Application sets up data and calls the
accelerator functional unit (AFU)

• AFU reads and writes coherent data across the
PCIe and communicates with the application

• PSL cache holds coherent data for quick AFU
access

POWER8 Processor

OS

App

Memory (Coherent)

AFU

IBM
Supplied PSL

22

© 2017 IBM Corporation 22

© 2015 IBM Corporation

2 2
Set Work Element

Descriptor (WED) at

AddrX – may contain

addresses of other data

structures

Understands WED content - and

any other addressed data

structures

AFU reserved for work Open device

cxl_afu_open_dev

1 Connect to

accelerator

App

OS

IBM Supplied

PSL

AFU

If required, App can

read or write AFU

registers

5
MMIO interface

AFU continues to work

using this interface

Reset AFU

PSL_WED_Ax is

set to AddrX

AFU_CNTL_An[E]

is set

jea gets AddrX

jcom gets start

CTL interface
Start accelerator 3 Attach device

cxl_afu_attach

6 6 AFU finishes

(Mechanism is user defined)

De-assert RUNNING

Assert DONE

App knows AFU is finished

(Mechanism is user

defined)

App can start again

from top or free AFU

CTL interface

Free device

cxl_afu_free

CAPI solution flow

Resp interface

CMD interface

Buffer interface
4

AFU fetches AddrX (the WED)

starts operation

23

© 2017 IBM Corporation

IBM Data Engine for NoSQL

Load Balancer

500GB Cache

Node

10Gb Uplink

POWER8 Server

Flash Array w/ up

to 40TB

After: NoSQL POWER8 + CAPI Flash

WWW

10Gb Uplink

WWW

Backup Nodes

500GB Cache

Node 500GB Cache

Node 500GB Cache

Node 500GB Cache

Node

Before: NoSQL in memory (x86)

24U
4U

Less is More

24:1 physical server consolidation =

6x less rack space

Infrastructure Requirements

- Large Distributed (Scale out)

- Large Memory per node

- Networking Bandwidth Needs

- Load Balancing

Acceptable

latency

CAPI

Memory

Conventional PCIe I/O

network

network

network

24:1 infrastructure consolidation

Upto 3x cost savings

6x less rack space 2U server + 2U FlashSystem vs. typical deployment

Infrastructure Consolidation

