

3rd ANNUAL STORAGE DEVELOPER CONFERENCE 2017

BUILDING A BLOCK STORAGE APPLICATION ON OFED - CHALLENGES

Subhojit Roy, Tej Parkash, Lokesh Arora, Storage Engineering

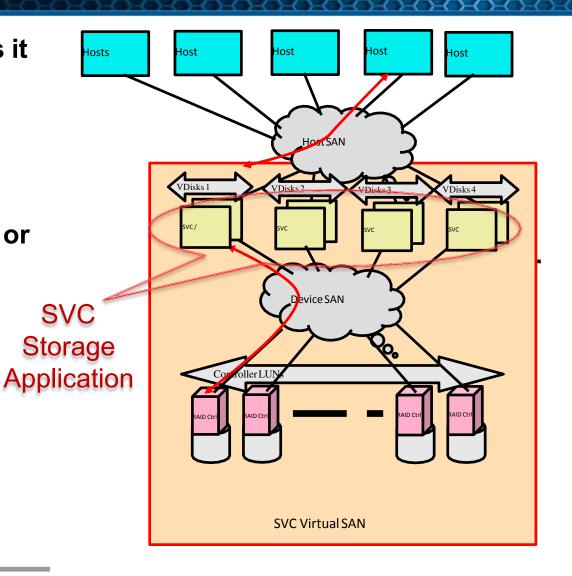
[May 26th, 2017]

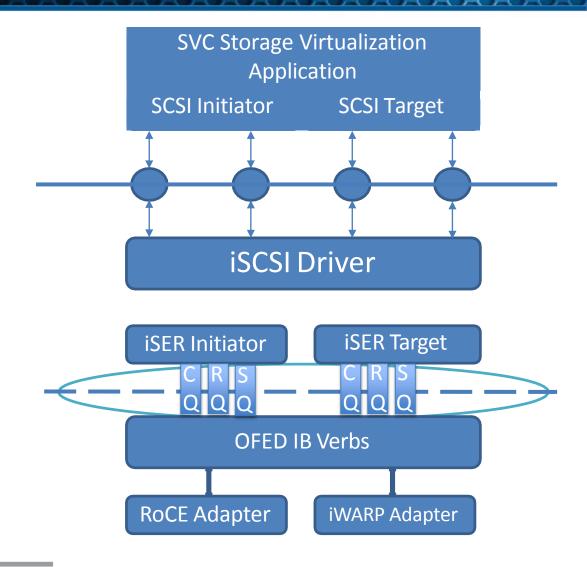
AGENDA

Introduction

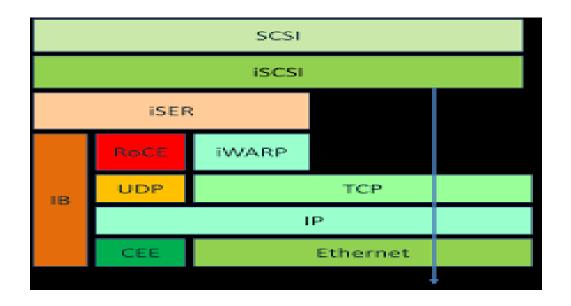
- Setting the Context (SVC as Storage Virtualizer)
- SVC Software Architecture overview
- ISER: Confluence of ISCSI and RDMA
- Performance: iSER v/s Fibre Channel

Challenges


- Queue Pair states
- RDMA disconnect behavior
- RDMA connection management
- Large DMA memory allocation
- Query Device List
- Conclusion


SETTING THE CONTEXT (SVC AS STORAGE VIRTUALIZER)

- SVC pools heterogenous storage and virtualizes it for the host
- iSER Target for Host
- iSER Initiator for Storage Controller (FLASH or HDD)
- Clustered over iSER for high availability
- Supports both RoCE and iWARP
- Supports 10/25/40/50/100G bandwidths


SVC SOFTWARE ARCHITECTURE OVERVIEW

- SVC application runs in user space
- iSER and iSCSI drivers in kernel space
- Lockless architecture (Per CPU port handling)
- Polled mode IO handling
- Supports RoCE and iWARP
- Vendor Independent (Mellanox, Chelsio, Qlogic, Broadcom, Intel etc.)
- Dependence on OFED kernel IB Verbs

iSER: Confluence of iSCSI and RDMA

- iSER is iSCSI with a RDMA data path
- Performance: Low Latency, Low CPU utilization, High Bandwidth
- High Bandwidth: 25Gb, 50Gb, 100Gb and beyond
- No new administration! Leverages existing knowledge of iSCSI administration & ecosystem on servers and storage

I/O	iSER (40Gb)	Fibre Channel (16Gb)
Read 4KiB	50 (us)	80 (us)
Write 4KiB	139 (us)	195 (us)
Read 64KiB	95 (us)	196 (us)
Write 64KiB	209 (us)	337 (us)

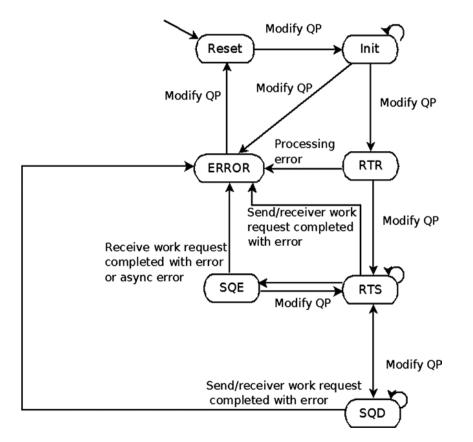
iSER: Fiber Channel benefits minus the additional costs

QUEUE PAIR STATES

Goal

Control number of retries and retry timeout during network outage

Actual behavior


 State transition differs across RoCE and iWARP e.g RoCE does not support SQD state

Expectation

- Transition QP to SQD state to modify QP attributes
- ib_modify_qp() must transition QP states as per state diagram shown
- All state transition must be supported by both RoCE and iWARP

Work Around

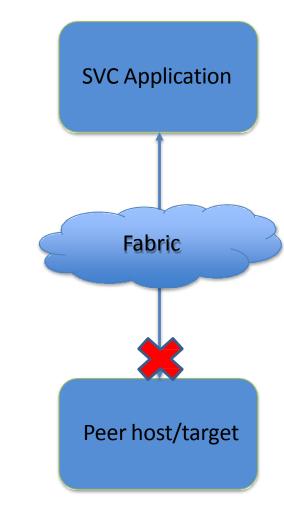
- No work around found
- Exploring vendor specific possibilities

Referenced from book "Linux Kernel Networking - Implementation and Theory"

RDMA DISCONNECT BEHAVIOR

- Goal/Observation
 - QP cannot be freed before RDMA_CM_EVENT_DISCONNECTED event is received
 - There is no control over the timeout period for this event

Actual behavior


- Link down on peer system causes DISCONNECT event to be received after long delay
 - RoCE: ~100 Sec
 - iWARP: ~70 Sec
- There is no standard mechanism (verb) to control these timeouts

Expectation

- RDMA disconnect event must exhibit uniform timeout across RoCE and iWARP
- Timeout period for disconnect must be configurable

Work Around

• Evaluating vendor specific mechanism to tune CM timeout

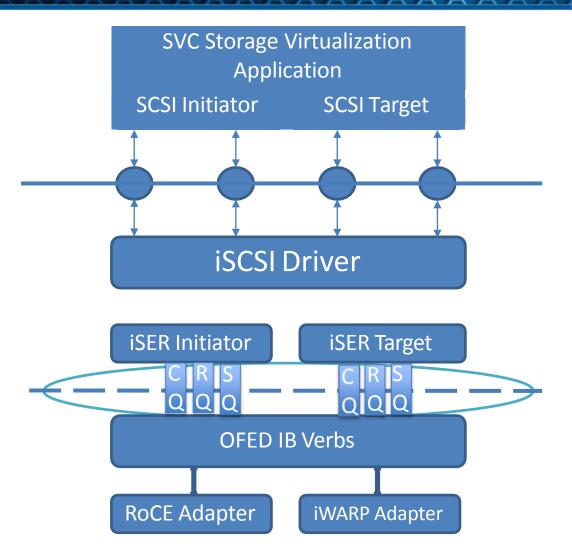
RDMA CONNECTION MANAGEMENT

1

Goal

Polled mode data path and Connection Management

Current mechanism


- No mechanism to poll for CM events. All RDMA CM events are interrupt driven
- Current implementation involves deferring CM events to Linux workqueues
- Application has no control over which CPU to POLL CM events from

Expectation

Queues for CM event handling

Work Around

Usage of locks add to IO latency

LARGE DMA MEMORY ALLOCATION

Observation

- Allocation of large chunks DMAable memory during session establishment fails
- SVC reserves majority of physical memory during system initialization for caching

Current mechanism

• IB Verbs use kmalloc() to allocate DMAable memory for all the queues

Expectation

- IB Verbs must provide a means to allocate DMA-able memory from pre-allocated memory pool. e.g. in the following
 - ib_alloc_cq()
 - ib_create_qp()

Work Around Solutions

 Modified iWARP and RoCE driver to use pre-allocated memory pools from SVC

Туре	Elements	Size	Total Size(KB)
SQ	2064	88	~177КВ
RQ	2064	32	~64KB
CQ	2064	32	~64KB

Single Connection Memory requirement in Linux OFED Stack = ~297KB

QUERY DEVICE LIST

Observation

- No kernel verb to find list of rdma devices on system until RDMA session is established
- Per device resource allocation during kernel module initialization

Current mechanism

• RDMA device available only after connection request is established by CM event handler

Expectation

• Need verb equivalent to ibv_get_device_list() in kernel IB Verbs

Work Around

Complicates per port resource allocation during initialization

CONCLUSION

- Initial indications of IO performance compared to FC excellent!
- iSER presents an opportunity for high performance Flash based Ethernet data center
- Error recovery and handling is still evolving
- Mass adoption by storage vendors requires more work in OFED
 - IB Verbs is not completely protocol independent
 - Proper documentation of RoCE vs iWARP specific difference
 - Definitive resource allocation timeout values (R_A_TOV equivalent in FC)
- Same requirements applicable to NVMef

3RD ANNUAL STORAGE DEVELOPER CONFERENCE 2017

THANK YOU

subhojit.roy@in.ibm.com.tprakash@in.ibm.com.loharora@in.ibm.com

[May 26th, 2017]

