
Next Generation File Replication In
GlusterFS

Jeff, Venky, Avra, Kotresh, Karthik

About me
● Rafi KC, Software Engineer at Red Hat

○ Rdma, snapshot, tiering, replication

Agenda
● Overview Of GlusterFS
● Existing Replication Model
● Proposed Solution
● JBR-Client
● Leader and Leader Election
● Journaling and Log Replication
● Reconciliation
● Log Compaction
● Q&A

N1

`
Bricks

N..n

Bricks

Distributed File System

Software Define NAS

TCP/IP or RDMA

Native Client, SMB, NFS

What is GlusterFS

N1
Bricks

N..n

Bricks

Distributed File System

Software Define NAS

TCP/IP or RDMA

Native Client, SMB, NFS

Client 2

Server 1 Server 2 Server 3

Client 1

Existing Replication
● Client side replication
● Symmetric replication
● Synchronous
● Full file heal
● Uses client bandwidth
● Locking and synchronization initiated from client

Proposed Solution
● Server to server
● Log based

○ Allows precise repair
■ No content comparison for multi-GB files

● Flexible consistency
● Faster I/O path for most deployments/workloads

Proposed Solution-cont
● Temporarily elected leader

○ Simplifies coordination (no locking between clients/shd)
○ Gives leader complete control over ordering and parallelism
○ Within one replica set, not whole volume/cluster

● JBR client and JBR servers
● Reconciliation

client

Leader Follower Follower

LEX

JBR

FDL

DISK

LEX

JBR

FDL

DISK

LEX

JBR

FDL

DISK

JBR-Client

Leader Election

● LEX relies heavily on a common store in between nodes participating in the
leadership election.

● We use etcd compare and swap with ttl (time to live)
● LEX is so modular, can be used independently
● Every set of participating nodes will have a unique key
● Nodes participate the leader election based on certain conditions, ie eligibility

check

Leader Election
● Once a leader is elected, it asks for followers to reconcile
● After quorum number of nodes reconciled, leader will start replicating the fops

from the client.
● Leader has to renew its leadership in a periodic interval
● If quorum loses, then leader step down
● Leader election happens

○ When quorum regains
○ Any failure in leader will result in a leadership change.
○ Leader failed to renew it’s lease

JBR Server
● Will be loaded in all replication servers
● Leader module will send to all followers
● Take decision based on the response from the followers
● Queue the conflicting fops
● Send rollback request if it failed to replicate on quorum number of followers
● It also stamps the fops to order it when flushing to disk

Journals -Terms
● Logs are divided into terms

○ leadership change always implies new term
○ Terms changes may also occur voluntarily (to keep terms short)

■ But no change in leader

● Journal for each term (on each replica) is stored separately from other terms
○ separate files make space management easier
○ simple/efficient access patterns (later slide)
○ Avoid need for locking during sync to backend

● Order of terms is always known
● Information about terms is stored in etcd
● Terms and log index together used as eligibility for leader election

Journal
● Manages memory + one or more files per term
● can be in memory until fsync/O_SYNC
● can be on separate (faster) device than main store
● Preallocate (in background) + direct/async I/O
● very efficient and flash-friendly

Journal
● All fops are journal only mode except create
● Create is a write-through journal (log in journal + perform the fop in main

store)
● Fops need to serve from journal
● Fops are first performed in the main store
● Based on the journal entries response will be altered

Journal

Journal
● Uses bloom filters
● Entries point to journal data
● Used to service reads (for consistency when writes are pending)
● One per term

Roll back
● Always roll forward
● If something fail, then invalidate the fop
● Invalidation has to be logged in majority of nodes

Reconciliation
● Separate process spawned
● Get information about terms from etcd
● Get information within terms from nodes
● Step through entries in order
● check for overlaps, discard any part that's no longer relevant
● figure out which replicas are in which state
● mark entry as completed

Reconciliation
● In most cases we will have only one term to reconcile
● In most cases reconciliation happens from leader
● Reconciliation starts when

○ A new leader is elected
○ A term change happens
○ A node comes online
○ A journal operation fails, we periodically trigger heal, It may be hard error

Log compaction
● We delete the terms once every node replicated the entries
● What if a node was down for days..
● Since it full data logging, the logs size would be huge
● We fall back to indexing mode

Future

● Fully log-structured (no "main store")`

Resources
● IRC

○ #gluster-dev
○ #gluster

● Mailing list
○ gluster-devel@gluster.org
○ gluster-users@gluster.org

● Design Doc
○ https://docs.google.com/document/d/1m7pLHKnzqUjcb3RQo8wxaRzENyxq1h1r385jnwUGc2

A/edit?usp=sharing

mailto:gluster-devel@gluster.org
mailto:gluster-devel@gluster.org
mailto:gluster-users@gluster.org
mailto:gluster-users@gluster.org
https://docs.google.com/document/d/1m7pLHKnzqUjcb3RQo8wxaRzENyxq1h1r385jnwUGc2A/edit?usp=sharing
https://docs.google.com/document/d/1m7pLHKnzqUjcb3RQo8wxaRzENyxq1h1r385jnwUGc2A/edit?usp=sharing
https://docs.google.com/document/d/1m7pLHKnzqUjcb3RQo8wxaRzENyxq1h1r385jnwUGc2A/edit?usp=sharing

Questions and/or Suggestions

A Journal Entry’s Life Cycle

1. Uncommitted : This is the first state every Journal Entry is going to be in, when it’s first introduced in the
“state machine”. This also means that this particular Journal Entry has not yet been acted upon and the
actual fop is still pending.

2. In Progress : This is the state that the Journal Entry is moved into, right before the actual fop is
performed in the Data Store. This enables us to differentiate between a Journal Entry that has not yet been
worked upon, from one that might be in any state of modification as part of the fop.

3. Waiting For Sync : This is the state where the Journal Entry will be moved to, once the actual fop is
performed, but a fsync is still pending. This means that the data might or might not be in the disk right now,
but the fop is successfully complete.

4. Committed : When a sync comes, all journals till that point, who were in “Waiting For Sync” state, are
moved to “Committed” state. This completes the lifecycle of the Journal Entry.

5. Invalid : When a Journal is in Uncommitted state, and has not yet been acted upon, and a rollback
request for the same comes, that particular entry is marked as “Invalid”, suggesting that this particular
Journal Entry will not be acted upon.

The Quorum is
configurable. It can
range from Q=ALL

to Q=(n/2)+1

After a node (leader or
not), receives a fsync

(periodic or client
driven), It updates all the

journals in “WAITING
FOR SYNC” To
“COMMITTED”

Leader Election
Happens

Node 1 Node 2 Node 3
(LEADER) (FOLLOWER) (FOLLOWER)

FOP

Leader Receives
A Write FOP
Sends It To
Followers

Followers Make a
Journal Entry and
Mark It As
“UNCOMMITTED”

Journal Entry : UNCOMMITTED

Journal Entry : UNCOMMITTED

Followers
Acknowledge Back To
The Leader

Leader On Receiving
ACKS, Checks If Quorum
Will Not Meet, Even If He
Is SuccessfulFOP

FOP

Journal Write: ACK

Journal Write: ACK

Journal Entry : UNCOMMITTED
Leader Creates An Entry In
The Journal And Marks It As
“UNCOMMITTED”. It Then
Checks If Quorum Has Met.

If Quorum WILL
Meet

+ve ACK

The Leader Then
Sends a +ve ACK

To The Client

In every node(leader as
well as follower), once an
“UNCOMMITTED” entry is

added to the Journal,
asynchronous to the I/O
path of the fop, it will be

acted upon.

The Journal Entry
Is First Marked As
“IN PROGRESS”

Journal Entry : IN PROGRESS

Journal Entry : IN PROGRESS

Journal Entry : IN PROGRESS

The Actual FOP is
Then Attempted

on the Data Store.

Once Write Is
Complete, Mark The

Journal (In Memory) as
“WAITING FOR SYNC”

Journal Entry : WAITING FOR SYNC

Journal Entry : WAITING FOR SYNC

Journal Entry : WAITING FOR SYNC

FSYNC FSYNC FSYNC

Journal Entry : COMMITTED

Journal Entry : COMMITTED

Journal Entry : COMMITTED

Any Read Must Be
Served By The Leader.

READ

POSIX Guarantees That
A read(2), Which Can Be
Proved To Occur After A

write() Has Returned,
Returns The New Data.

But After The Leader Has Sent
A +ve Ack, And Before The

Actual FOP Is Completed In The
Data Store, There Is A Window
Where The Data Store Will Not

Have The New Data

To Resolve This, A Journal
View Of Entries Yet To Be

Committed Is To Be
Maintained, And Served

During Consecutive READS

In-Memory Journal
View Of All Entries

in
“UNCOMMITTED”,

and “IN
PROGRESS” stateOnce An Entry Is

Marked As
“WAITING FOR

SYNC”, It’s
Flushed Out Of
The In-Memory
Journal View

If Quorum Has Met

Node 1 Node 2 Node 3
(LEADER) (FOLLOWER) (FOLLOWER)

FOP
Journal Entry : UNCOMMITTED

Journal Entry : UNCOMMITTED

FOP

FOP

Journal Write: ACK

Journal Write: ACK

Leader On Receiving
ACKS, Checks If Quorum
Will Not Meet, Even If He
Is Successful

If Quorum Will Not
Meet

We need to
understand that, the

Quorum check, is
based on Journal
Write, and not the
actual FOP being

performed.

And assuming Q = All,
then Journal Write

must have failed on
any one of the follower

nodes.

Leader will not log the
Entry In His Journal,

and will send a -ve Ack
to the client.

-ve ACK

But nothing’s stopping
the other two nodes
from performing the

FOP asynchronously,
and succeeding.

Journal Entry : COMMITTED

The Leader Will Also Have Sent
A RollBack Request To The

Followers Which Had Sent A +ve
Ack for Journal Write. This Ack
Will Do Nothing But Invalidate
The Journal Entry, If It Hasn’t

Already Been Acted Upon

In Which Case During Reconciliation
(On Term Change), This Particular

Change Will Be Reverted, EIther From
The Uncommitted Entry In The

Follower, Or The Invalid Entry In The
Leader (Both Of Which Are Technically

The Same)

ROLLBACK

ROLLBACK

Journal Entry : INVALID

(FOLLOWER)

Node 1 Node 2 Node 3
(LEADER) (FOLLOWER) (FOLLOWER)

FOP
Journal Entry : UNCOMMITTED

Journal Entry : UNCOMMITTED

FOP

FOP

Journal Write: ACK

Journal Write: ACK

Leader On Receiving
ACKS, Checks If Quorum
Will Not Meet, Even If He
Is Successful

+ve ACK

Leader Tries To Creates
An Entry In The Journal
And Fails.

If Quorum WILL
Meet

Leader Checks If
Quorum Is Being Met
Even With His Failure
To Write Journal Entry

If Quorum Meets

Journal Entry : UNCOMMITTED

Leader Sends A +ve
Ack To The Client And
Initiates A Leadership

Change

(LEADER)

Reconciliation
● When all entries in a term are complete, term itself might be complete
● Exception: operations still completing locally (no fsync)
● "complete locally" and "journal replicated remotely" are separate
● there might never be a time when all replicas are up
● limit reduced-copy-count windows regardless

