
Codes for Big Data: Erasure Coding for Distributed
Storage

P. Vijay Kumar

Professor,
Department of Electrical Communication Engineering

Indian Institute of Science, Bangalore

The 3rd Annual Storage Developer Conference
Bengaluru

May 25-26, 2017

Thanks go out to

Paul Talbut and Udayan Singh for the invite

and

K. Gopinath and Siddhartha Nandi

for being kind enough to suggest my name..

2 / 41

Acknowledgements

Research Collaborators Joint work with:

Birenjith Sasidharan, Myna Vajha, S. B. Balaji and Nikhil Krishnan
(PhD students, IISc)

Bhagyashree Puranik, Ganesh Kini and Vinayak Ramkumar (MTech
students, IISc)

Srinivasan Narayanamurthy, Syed Hussain and Siddhartha Nandi
(NetApp ATG, Bengaluru, India)

3 / 41

Organization

Erasure Coding

Node Failures and the Evolution of Coding Theory

Regenerating Codes

Locally Recoverable Codes (briefly)

Codes with Local Regeneration (briefly)

Codes for Multiple Erasures (briefly)
I Codes for Data Availability
I Codes with Sequential Recovery

The Coupled-Layer MSR Code in Action

4 / 41

Erasure Coding

5 / 41

Fault Tolerance

Fault tolerance is key to making data loss a very remote possibility

A time-honored means of achieving fault tolerance is replication..

6 / 41

Triple Replication

File%or%Data%Object%

B%A% C% D% E%

Data%Block%
A%A%A%

Triple%replica6on%

Stored%in%different%nodes%of%the%storage%network%
7 / 41

Drawback of Triple Replication

But triple replication is poor in terms of storage e�ciency: just 33%.
Are there better ways ?

A well-known alternative is to use Erasure Coding (EC)

8 / 41

Drawback of Triple Replication

But triple replication is poor in terms of storage e�ciency: just 33%.
Are there better ways ?

A well-known alternative is to use Erasure Coding (EC)

9 / 41

Erasure Coding of Data

File%or%Data%Object%

k%%storage%units%

Ak%A2%A1%

Split%the%data%object%%
into%k%parts%

P1% P2% Pm%

add%m%parity%storage%units%

(k,m)%erasure%%
code%

10 / 41

Two Key Performance Measures

1 Storage e�ciency

k

k +m

2 fault tolerance

- at most m storage units

3 Codes with maximum possible fault
tolerance) MDS codes

4 Reed-Solomon codes - a prime
example

11 / 41

An Example MDS Code - The RAID 6 Code

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/RAID_6.svg/1280px-RAID_6.svg.png
12 / 41

https://upload.wikimedia.org/wikipedia/commons/thumb/7/70/RAID_6.svg/1280px-RAID_6.svg.png

Other RS Codes in Practice

Most Popular in Practice: Reed-Solomon Codes

8

Intel & Cloudera (2016) “Progress Report: Bringing Erasure Coding to
Apache Hadoop”

Storage Systems Reed-Solomon codes
Linux RAID-6 RS(10,8)
Google File System II (Colossus) RS(9,6)
Quantcast File System RS(9,6)
Intel & Cloudera’ HDFS-EC RS(9,6)
Yahoo Cloud Object Store RS(11,8)
Backblaze’s online backup RS(20,17)
Facebook’s f4 BLOB storage system RS(14,10)
Baidu’s Atlas Cloud Storage RS(12, 8)

H. Dau et al, “Repairing Reed-Solomon Codes with Single and Multiple Erasures,” ITA, 2017,

San Diego.

13 / 41

Evolution of HDFS to Incorporate EC) HDFS-EC
1 Typically, EC reduces the storage cost by 50% compared with 3x

replication
2 Motivated by this, Cloudera and Intel initiated the HDFS-EC project
3 Targeted for release in Hadoop 3.0.
4 Employs a striped layout:

5 Possibility of incorporating more sophisticated EC schemes !

Zhe Zhang, Andrew Wang, Kai Zheng, Uma Maheswara G., and Vinayakumar, “Introduction to

HDFS Erasure Coding in Apache Hadoop,” September 23, 2015.
14 / 41

Node Failures and the Evolution of Coding Theory

15 / 41

Node Failures
An important consideration is how e�ciently the EC can handle node
failures as such failures are commonplace:

M. Asteris, D. Papailiopoulous, A. Dimakis, R. Vadali, S. Chen, and D. Borthakur, “XORing

elephants: Novel erasure codes for big data, ” PVLDB, 2013.
16 / 41

RS Codes and Node Failures

Under the conventional approach, RS codes are ine�cient in two respects
at node repair:

In the example Facebook [10, 4] RS code,

1 the amount of data download (repair BW) equals 10 times the
amount stored within the failed node

2 Also, 10 storage units need to be contacted for repair

there is room for improvement...

17 / 41

Coding Theory Responds

1
Regenerating codes

I minimize the amount of data
download (repair bandwidth)
needed for node repair

2
Locally recoverable codes

I minimize the number of helper
nodes contacted for node repair,
but also reduce repair bandwidth

3
Novel and e�cient approaches

to RS repair a more recent
development

Regenera'ng(Codes(

Codes(with((Locality(

•  Regenera'ng(codes(reduce(repair(bandwidth(
•  Codes(with(locality(reduce(repair(degree(

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network
Coding for Distributed Storage Systems,” IEEE Trans. Inform. Th., Sep. 2010.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the Locality of Codeword
Symbols,” IEEE Trans. Inf. Theory, Nov. 2012.

V. Guruswami, M. Wootters, “Repairing Reed-Solomon Codes,” arXiv:1509.04764 [cs.IT] .

18 / 41

Some Comments

Regenerating Codes

1 Minimum Storage Regenerating (MSR) Codes are MDS codes
2 Regenerating codes are vector codes, each code symbol is a vector of

code ` symbols
I ` is called the sub-packetization level

Locally Recoverable Codes

1 Locally recoverable codes yield on storage e�ciency for ease of node
repair

Fresh approach to RS repair

1 regard RS codes as vector codes

2 minimize repair bandwidth under a constraint on sub-packetization
level `

19 / 41

Regenerating Codes

Focus here on the subclass of Minimum Storage Regenerating (MSR)
Codes

20 / 41

Raid Code - Not Very Good at Handling Node Failure..

The conventional approach:

Connect to any 2 nodes,

Reconstruct A and B ,

Extract A

Disk 1

Disk 2

Disk 3

Disk 4

A

B

A+B

A+θB

A

B

(4, 2) MDS code
Used in RAID 6

B

A+B

New disk 1

But downloading 2 units of data to revive a node that stores 1 units of
data is clearly, wasteful of network bandwidth..

21 / 41

Replacing the RAID 6 Code with a Regenerating Code

Here, each node now stores two “half-symbols”
We download 3 half-symbols as opposed to 2 full-symbols

I Can recover any of {A1,A2,B1}

Disk 1

Disk 2

Disk 3

Disk 4

B 1

2
A

1
+
2
A

2
+
B

1

2
A

1
+
4
A

2
+
2
B

1

A
1

A
2

B
1

B
2

A
1

A
2

B
1

B
2

2A
1
+2A

2
+B

1

2A
1
+4A

2
+2B

1

A
2
+2B

1
+2B

2

A
2
+2B

1
+4B

2

A
1

A
2

22 / 41

Evolution of MSR Codes

Code Explicit SE SPL OA HN

Product-Matrix Yes Low Low No d

Hadamard & Butterfly* Yes High High No all
Zig-Zag Code No High High Yes all

Sasidharan et al (1) No High Low Yes all
Ye-Barg (1) Yes High High Yes all

Ye-Barg (2) Yes High Low Yes all
Sasidharan et al (2) Yes High Low No d

*) limited to 2 parity nodes

SE) storage e�ciency

SPL) sub-packetization level

OA) optimal access (number of symbols accessed for repair)

HN) number of helper nodes needed

23 / 41

References (MSR Codes with High Storage E�ciency)
1 K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal Exact-Regenerating Codes for

Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction,”
IEEE Trans. Inf. Theory, Aug. 2011.

2 D. S. Papailiopoulos, A. G. Dimakis, and V. Cadambe, “Repair optimal erasure codes
through Hadamard designs,” IEEE Trans. Inf. Theory, May 2013.

3 E. En Gad, R. Mateescu, F. Blagojevic, C. Guyot, and Z. Bandic, “ Repair-Optimal MDS
Array Codes Over GF (2),” in Proceedings IEEE International Symposium on Information
Theory (ISIT), 2013.

4 Zhiying Wang, Itzhak Tamo, Jehoshua Bruck, “Optimal Rebuilding of Multiple Erasures
in MDS Codes, ” IEEE Trans. Information Theory, Feb. 2017.

5 B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “A high-rate MSR code with polynomial
sub-packetization level, ” in IEEE International Symposium on Information Theory, ISIT
2015.

6 S. Goparaju, A. Fazeli, and A. Vardy, “Minimum storage regenerating codes for all
parameters,” IEEE Information Theory Transactions, April 2017.

7 M. Ye and A. Barg, “Explicit constructions of high-rate MDS array codes with optimal
repair bandwidth, ” IEEE Information Theory Transactions, April 2017.

8 M. Ye and A. Barg, “Explicit constructions of optimal-access MDS codes with nearly
optimal sub-packetization, ” CoRR, vol. abs/1605.08630, 2016.

9 B Sasidharan, M Vajha, PV Kumar, “An Explicit, Coupled-Layer Construction of a
High-Rate MSR Code with Low Sub-Packetization Level, Small Field Size and
d < (n � 1), ” CoRR, vol. abs/1701.07447, 2017, to be presented at ISIT 2017.

24 / 41

Example Coupled-Layer MSR Code16MB 16MB 16MB 16MB

Z"="(0,0,0)"

Z"="(1,1,1)"

Z

yx"

Data cube representation of the CL-MSR Code.

The cube has:

●  6 columns, each

associated to a distinct
node

●  8 horizontal planes.

●  A column has 8 points

●  Each point corresponds
to 2MB of storage

2MB

Our coupled-layer perspective
on the Ye-Barg construction
(2)

a (4, 2) MSR code

6 nodes, sub-packetization
level is ` = 8

6⇥ 8 = 48 points

in the example to follow, each
point stores 2MB

1 M. Ye, and A. Barg, “Explicit constructions of optimal- access MDS codes with nearly
optimal sub-packetization, ” May 2016.

2 B. Sasidharan, M. Vajha, and PVK. “An Explicit, Coupled-Layer Construction of a
High-Rate MSR Code with Low Sub-Packetization Level, Small Field Size and
d < (n � 1), ” to be presented at ISIT 2017.

25 / 41

Performance of the Coupled-Layer MSR Code

1 A comparison of actual repair time is shown. In the figure,
I the (6, 4) code is in our present notation a (4, 2) code
I the (12, 9) code is in our present notation a (9, 3) code
I the (20, 16) code is in our present notation a (16, 4) code

26 / 41

Performance of the Coupled-Layer MSR Code

Similar gains in network bandwidth and disk read

Thus a larger sub-packetization level is not necessarily a problem for
implementation

27 / 41

Locally Recoverable Codes

28 / 41

Windows Azure Storage Coding Solution

Comparison:+In+terms+of+reliability+of+data+and+number+of+helper+nodes+contacted+for+
node+repair,+the+two+codes+are+comparable.+
+
+The+overheads+are+quite+different,+29%+for+the+Azure+code+versus+43%+for+the+RS+code.+++
+
This+difference+has+reportedly+saved+MicrosoH+millions+of+dollars!++

P1+

P2+

X1+ X2+ X3+ X4+ X5+ X6+ X7+

PX+XPcode+

Y1+ Y2+ Y3+ Y4+ Y5+ Y6+ Y7+

PY+YPcode+

Y1+ Y2+ Y3+ Y4+ Y5+ Y6+ Y7+ P1+ P2+ PY+

MicrosoH+Azure+Code+

ReedPSolomon+Code+

Comparison: In terms of reliability and number of helper nodes contacted
for node repair, the two codes are comparable. The overheads however are
quite di↵erent, 1.29 for the Azure code versus 1.5 for the RS code. This
di↵erence has reportedly saved Microsoft millions of dollars.

Reed$Solomon*
Codeword*X6*X1* X5*X2* X3* X4* P1* P2* P3*

(any*6*of*9*can*be*used*to*recover*the*codeword)*
Huang, Simitci, Xu, Ogus, Calder, Gopalan, Li, Yekhanin, “Erasure Coding in Windows Azure
Storage,” USENIX, Boston, MA, 2012.

29 / 41

Codes with Hierarchical Locality

[4, 3, 2] code) (3,1) code

[12, 8, 3] code) (8,4) code

[24, 14, 6] code) (14,10) code

Codes with hierarchical locality do exactly that by calling for help
from an intermediate layer of codes when the local code fails.

These codes may be regarded as the “middle codes”.

B. Sasidharan, G. K.Agarwal, PVK, “Codes With Hierarchical Locality,” arXiv:1501.06683
[cs.IT].

30 / 41

Codes with Local Regeneration

31 / 41

Codes with Local Regeneration

Regenera'ng(Codes:((
Minimize(repair(BW(

Codes(with(Locality:((
Minimize(repair(degree(

Codes(with(Local(Regenera'on:((
Small(repair(BW(and((
small(repair(degree(

A single code that has both locality and regeneration properties

and inherent double replication of data

1 G. M. Kamath, N. Prakash, V. Lalitha, PVK, ‘Codes With Local Regeneration and
Erasure Correction,” T-IT, Aug. 2014 .

32 / 41

An Example Code with Local Regeneration
The construction makes can make use of an all-symbol local scalar code
and is also optimal:

 1,2,
3,4

3,6,
8,P1

 2,5,
8,9

4,7,
9,P1

1,5
6,7

1

2

5 3

6

9

7

4

8

 1,2,
3,4

3,6,
8,P2

 2,5,
8,9

4,7,
9,P2

 1,5,
6,7

1

2

5 P2 3

6

9

7

4

8

Local Code 1 Local Code 2

1 2 9 P1 . . . 1 2 9 P2 . . .

 Scalar All-Symbol Locality Code

Local Code 1 Local Code 2

P1

1 2 9 P3 . . .

Local Code 3

 1,2,
3,4

3,6,
8,P3

 2,5,
8,9

4,7,
9,P3

 1,5,
6,7

1

2

5 P3 3

6

9

7

4

8

Local Code 3

33 / 41

Codes with Availability (Recovery from Simultaneous
Multiple Erasures)

34 / 41

Recovery in Parallel

 c11 C12 C13 c14 c15

 c21 c22 c23 c24 c25

 c31 c32 c33 c34 c35

 c41 c42 c43 c44 c45

 c51 c52 c53 c54 c55

X X

Last column is a parity check on entries to the left in the same row
Last row is a parity check on entries above in the same column
Can recover locally from 2 erasures in parallel 35 / 41

Codes with Sequential Recovery (Recovery from
Simultaneous Multiple Erasures)

36 / 41

Sequential Recovery

 c11 C12 C13 c14 c15

 c21 c22 c23 c24 c25

 c31 c32 c33 c34 c35

 c41 c42 c43 c44 c45

 c51 c52 c53 c54 c55

X X
X

Same code as before
Can recover locally from 3 erasures in a sequential manner

Sequential recovery enables codes with larger storage e�ciency 37 / 41

References - Codes for Multiple Erasures

1 A. Wang and Z. Zhang, “Repair locality with multiple erasure tolerance,” IEEE Trans.
Inf. Theory, Nov. 2014.

2 N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with locality for two erasures,” in Proc.
IEEE Int. Symp. Inform. Theory (ISIT) 2014.

3 W. Song and C. Yuen, “Binary locally repairable codes - sequential repair for multiple
erasures,” in Proc. IEEE GLOBECOM, 2016.

38 / 41

Functioning of an Example, Coupled-Layer MSR Code

Goal: To show that a larger sub-packetization level is not necessarily
a problem for implementation

39 / 41

Example Coupled-Layer MSR Code16MB 16MB 16MB 16MB

Z"="(0,0,0)"

Z"="(1,1,1)"

Z

yx"

Data cube representation of the CL-MSR Code.

The cube has:

●  6 columns, each

associated to a distinct
node

●  8 horizontal planes.

●  A column has 8 points

●  Each point corresponds
to 2MB of storage

2MB

Our coupled-layer perspective
on the Ye-Barg construction
(2)

a (4, 2) MSR code

6 nodes, sub-packetization
level is ` = 8

6⇥ 8 = 48 points

in the example to follow, each
point stores 2MB

1 M. Ye, and A. Barg, “Explicit constructions of optimal- access MDS codes with nearly
optimal sub-packetization, ” May 2016.

2 B. Sasidharan, M. Vajha, and PVK. “An Explicit, Coupled-Layer Construction of a
High-Rate MSR Code with Low Sub-Packetization Level, Small Field Size and
d < (n � 1), ” to be presented at ISIT 2017.

40 / 41

64MB

Consider a file of size 64MB

•  Will encode via a [k=4, m=2] MSR Code
•  Called the Coupled-Layer MSR Code

16MB 16MB 16MB 16MB

Step 1: Break file into k = 4 data chunks, each of 16MB.

16MB 16MB 16MB 16MB

Z"="(0,0,0)"

Z"="(1,1,1)"

Z

yx"

Data cube representation of CL-MSR Code

2MB

The cube has:

●  6 columns, each

associated to a distinct
node

●  8 horizontal planes.

●  A column has 8 points

●  Each point corresponds
to 2MB of storage

16MB 16MB 16MB

x" y

Z"="(0,0,0)"

Z"="(1,1,1)"

Z

Place four 16MB chunks in four systematic nodes

16MB 16MB

x" y

Z"="(0,0,0)"

Z"="(1,1,1)"

Z

Place four 16MB chunks in four systematic nodes

16MB

x" y

Z"="(0,0,0)"

Z"="(1,1,1)"

Z

Place four 16MB chunks in four systematic nodes

x" y

Z"="(0,0,0)"

Z"="(1,1,1)"

Z

Place four 16MB chunks in four systematic nodes

We now have the systematic nodes

Actual data cube
A

We will now compute the parity nodes

Virtual data cube
B

Actual data cube
A

Will get there through an intermediate “Virtual data cube”

Start filling the virtual data cube on the right as follows

A1

A2

Certain pairs of points in the cube are “coupled”

A1

A2

B1 B2

Coupling
Transform

A1 A2

The Coupling Transform is a 2x2 matrix transform

A1

A2 B1 B2

Place the points obtained in the Virtual data cube

A1

A2 B1 B2

B1

B2

Place the points obtained in the Virtual data cube

A1

A2

Place the points obtained in the Virtual data cube

A1

A2

B1 B2

Coupling
Transform

A1 A2

Place the points obtained in the Virtual data cube

A1

A2 B1 B2

B1

B2

Place the points obtained in the Virtual data cube

A1

A2

B1 B2

Coupling
Transform

A1 A2

Place the points obtained in the Virtual data cube

A1

A2

B1 B2

Place the points obtained in the Virtual data cube

A1

A2

B1 B2
B1

B2

Place the points obtained in the Virtual data cube

B1

B2
A2

A1

Place the points obtained in the Virtual data cube

Place the points obtained in the Virtual data cube

Copy

Red dotted points are not paired, they are simply
carried over

Copy

Red dotted points are not paired, they are simply
carried over

x"
y

Z"="(0,0,0)"

Z"="(1,1,1)"

Z

We now have data-part of the Virtual data cube

Z"="(0,0,0)"

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(0,0,0)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(0,0,0)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(0,0,0)"

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(1,0,0)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(0,1,0)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(1,1,0)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(0,0,1)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(1,0,1)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(0,1,1)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Z"="(1,1,1)"

RS Encode

Each plane is Reed-Solomon coded to obtain
parity points

Virtual data cube
B

Now we have the complete Virtual data cube

Virtual data cube
B

Parity points of Actual data cube can now be computed

Virtual data cube
B

B1

B2

Perform decoupling

Virtual data cube
B

B1

B2

B1 B2

A1 A2

Inverse
Coupling

Transform

Perform decoupling

A1 A2

Virtual data cube
B

B1

B2

Perform decoupling

A1 A2

Virtual data cube
B

B1

B2

A1

A2

Perform decoupling

Virtual data cube
B

B1

B2

Perform decoupling

Virtual data cube
B

B1

B2

B1 B2

A1 A2

Inverse
Coupling

Transform

Perform decoupling

Virtual data cube
B

B1

B2

A1 A2

Perform decoupling

Virtual data cube
B

B1

B2

A1 A2

Perform decoupling

A1

A2

Virtual data cube
B

B1

B2

B1 B2

A1 A2

Inverse
Coupling

Transform

Perform decoupling

Virtual data cube
B

B1

B2

A1 A2

Perform decoupling

Virtual data cube
B

B1

B2

A1 A2

Perform decoupling

A1

A2

Virtual data cube
B

B1

B2

Perform decoupling

A1

A2

Virtual data cube
B

B1

B2

Copy

Red dotted points are simply carried over

Virtual data cube
B

B1

B2

Copy

Red dotted points are simply carried over

Decoupling

Coupling

Actual and Virtual data cubes

Virtual data cube
B

Virtual data cube
A

The encoding is now completed!

Problem of Node Repair: One node fails

Problem of Node Repair: One node fails

For this example, only half of the planes participate
in repair

● Total Helper Data = 2MB X 4 X 5 = 40MB

● Opposed to RS code = 16MB X 4 = 64MB

● Much larger savings seen for m > 2

Coupling

Couple points

Coupling

RS Dec

Run RS decoding on each of the selected planes

Coupling

RS Dec

RS Dec

Run RS decoding on each of the selected planes

Coupling

RS Dec

RS Dec

RS Dec

Run RS decoding on each of the selected planes

Coupling

RS Dec

RS Dec

RS Dec

RS Dec

Run RS decoding on each of the selected planes

Half the number of required points are now already
computed

Remaining points are computed by
coupling transform

Remaining points are computed by
coupling transform

Remaining points are computed by
coupling transform

Remaining points are computed by
coupling transform

Replacement
Node

Contents of the failed node are now completely
recovered

Replacement
Node

Node Repair done: system back to original state!

Thanks!

41 / 41

