Oxymoron

Computing on Encrypted Data

Srinivasan Narayananmurthy (Srini)
May 26th, 2017
Storage Developers Conference India, Bangalore
About

- **Me**
 - Engineer at the Advanced Technology Group since 2011.
 - Spent a decade working on security before joining NetApp.
 - Mostly on a PhD & several years at RSA Security.
 - @NetApp: Data Security & Privacy, Erasure codes, Distributed Storage Systems.

- **My Involvement in SNIA**
 - SDC talks (at India & US) in 2016 on Erasure Codes.
 - Member of SNIA Security TWG.
 - Tries hard to stay awake until 2:30AM (IST) to attend weekly meetings! 😊
 - Early version of this talk at Data Storage Security Summit 2016.

- **Talk: Searchable Encryption**
 - Non-mathematical; non-algorithmic.
Oxymoron

[ok-si-mawr-on, -mohr-]

A figure of speech by which a locution produces an incongruous, seemingly self-contradictory effect, as in “cruel kindness” or “to rush slowly” OR “computing/ searching on encrypted data.”
The Problem

Semi-trusted (Honest-but-curious) server
Classification
Solution

Encrypt!
But …
Or …
Searchable Encryption

Encrypted Data-at-rest & Data-in-motion
Deterministic Encryption

Example: AES – ECB mode
Application: Convergent Encryption for Deduplication

Brute-force / Dictionary attacks (IND-CPA)
Order-preserving Encryption (OPE)

Range Query e.g. age > 3

Symmetric encryption over integers (AES – FFX)
Searchable Symmetric Encryption (SSE)

Access pattern leakage!
Oblivious RAM (oRAM)

Hides all information, including access pattern
Many rounds of communication; Large storage cost
SSE + oRAM

Hides all information, including access pattern;
Many rounds of communication, Large storage cost
Structured Data

Social networks, Web crawlers, Maps, Network routing, Communication (email headers, phone logs), Research papers (citations)
Structured Encryption (STE)
Partial (Additive) homomorphism!

Private Stream Searching (PSS)
Fully Homomorphic Encryption (FHE)

\[2 + 5 = ? \]

Computationally expensive, high storage overhead
Search time is linear in the length of the dataset

Somewhat Homomorphic (SWHE):
Efficient; restricted number of additions and multiplications
Other Encryption Schemes

- **PKEET (Public Key Encryption with Equality Test)**
 - Equality tests of plaintexts encrypted under different public keys

- **PE (Predicate) & IPE (Inner Product)**
 - Access-control & (originally) equality tests
 - IBE (Identity), AIBE (Anonymous IBE), HIBE (Hierarchical)
 - ABE (Attribute)

- **HVE (Hidden Vector)**
 - Wild card characters inside a key
 - Supports: conjunctive, subset, range queries, disjunctions, polynomials, inner products
Summary

- **Symmetric**
 - Searchable Symmetric Encryption (SSE)
 - IND-CKA2 security
 - Efficient (sub-linear) SE schemes

- **Asymmetric**
 - Public key Encryption with Keyword search (PEKS)
 - Efficiency and security?
 - Lack of query expressiveness
Tradeoffs

Computation & Communication complexity
E.g. sub-linear index

Efficiency

Leak: Index, search & access pattern
E.g. IND-CKA2

Security

Functionality

Query expressiveness
E.g. Equality, conjunctive, extended search
(subset, fuzzy, range queries, inner products)
Efficiency vs. Security

Efficiency vs. Leakage diagram with markers for ORAM, FHE, HVE (PEKS), PE (IBE, ABE), IPE (AIBE), SSE, STE, PKEET, and PPE.
Functionality vs. Efficiency

- ORAM
- FHE
- HVE (PEKS)
- PE (IBE, ABE)
- IPE (AIBE)
- SSE PEKS
- STE
- PKEET
- PPE
Applications

- Secure search
- Secure storage
 - Outsourced, Backup
- Secure Data management
 - Deduplication, email forwarding, etc.
- Security tiers for analytics
- Private data with “enough” privacy
 - Call logs, map queries, image search, data classification
In Practice

1) Systems
 - CryptDB, MIT CSAIL
 - Cipherbase, Microsoft
 - Google’s Encrypted BigQuery Demo
 - Microsoft SQL Server 2016 Always Encrypted

2) Implementations
 - CS2, Microsoft & UCB (2012); C++; Keyword search
 - IARPA, IBM & UCI (2013); C++; Conjunctive
 - BlindSeer, Bell Labs & Columbia (2014); Boolean
 - GRECS, Microsoft, Boston & Harvard (2015); C++; Graph
 - Clusion, Brown & Colorado (2016); Java; Boolean
Conclusion

- **Tradeoffs: Security vs. Efficiency vs. Functionality**
- **Unclear security model**
- **Not-so-good asymmetric schemes**
- **Limited set of (academic) implementations**

- **But ...**

 This could be as big a wave as public-key crypto!
Thank you.
naras@netapp.com

*You know what I mean! 😊

Imagine a fancy animation here, in the cloud. *