!Oxymoron Computing on Encrypted Data

Srinivasan Narayanamurthy (Srini) May 26th, 2017 Storage Developers Conference India, Bangalore

About

o Me

- Engineer at the Advanced Technology Group since 2011.
- Spent a decade working on security before joining NetApp.
 Mostly on a PhD & several years at RSA Security.
- @NetApp: Data Security & Privacy, Erasure codes, Distributed Storage Systems.
- My Involvement in SNIA
 - SDC talks (at India & US) in 2016 on Erasure Codes.
 - Member of SNIA Security TWG.
 - Tries hard to stay awake until 2:30AM (IST) to attend weekly meetings! ③
 - Early version of this talk at Data Storage Security Summit 2016.
- Talk: Searchable Encryption
 - Non-mathematical; non-algorithmic.

Oxymoron

[ok-si-mawr-on, -mohr-]

a figure of speech by which a locution produces an incongruous, seemingly selfcontradictory effect, as in "cruel kindness" or "to rush slowly" OR "computing/ searching on encrypted data."

The Problem

4

Classification

Solution

Encrypt !

But ...

Or ...

Searchable Encryption

Encrypted Data-at-rest & Data-in-motion

Deterministic Encryption

Example: AES – ECB mode Application: Convergent Encryption for Deduplication Brute-force / Dictionary attacks (IND-CPA)

Order-preserving Encryption (OPE)

Symmetric encryption over integers (AES – FFX)

Searchable Symmetric Encryption (SSE)

Access pattern leakage!

Oblivious RAM (oRAM)

Hides all information, including access pattern Many rounds of communication; Large storage cost

SSE + oRAM

Hides all information, including access pattern; Many rounds of communication, Large storage cost

Structured Data

Social networks, Web crawlers, Maps, Network routing, Communication (email headers, phone logs), Research papers (citations)

Structured Encryption (STE)

Private Stream Searching (PSS)

Partial (Additive) homomorphism!

Fully Homomorphic Encryption (FHE)

Computationally expensive, high storage overhead Search time is linear in the length of the dataset Somewhat Homomorphic (SWHE): Efficient; restricted number of additions and multiplications

NetApp

Other Encryption Schemes

• PKEET (Public Key Encryption with Equality Test)

- Equality tests of plaintexts encrypted under different public keys
- o PE (Predicate) & IPE (Inner Product)
 - Access-control & (originally) equality tests
 - IBE (Identity), AIBE (Anonymous IBE), HIBE (Hierarchical)
 - ABE (Attribute)
- o HVE (Hidden Vector)
 - Wild card characters inside a key
 - Supports: conjunctive, subset, range queries, disjunctions, polynomials, inner products

Summary

o Symmetric

- Searchable Symmetric Encryption (SSE)
- IND-CKA2 security
- Efficient (sub-linear) SE schemes

• Asymmetric

- Public key Encryption with Keyword search (PEKS)
- Efficiency and security?
- Lack of query expressiveness

Tradeoffs

Efficiency vs. Security

Functionality vs. Efficiency

Applications

- Secure search
- Secure storage
 - Outsourced, Backup
- Secure Data management
 - Deduplication, email forwarding, etc.
- Security tiers for analytics
- Private data with "enough" privacy
 - Call logs, map queries, image search, data classification

In Practice

I) Systems

- <u>CryptDB</u>, MIT CSAIL
- Cipherbase, Microsoft
- Google's Encrypted BigQuery Demo
- Microsoft SQL Server 2016 Always Encrypted

2) Implementations

- <u>CS2</u>, Microsoft & UCB (2012); C++; Keyword search
- IARPA, IBM & UCI (2013); C++; Conjunctive
- BlindSeer, Bell Labs & Columbia (2014); Boolean
- GRECS, Microsoft, Boston & Harvard (2015); C++; Graph
- Clusion, Brown & Colorado (2016); Java; Boolean

Conclusion

- Tradeoffs: Security vs. Efficiency vs. Functionality
- Unclear security model
- Not-so-good asymmetric schemes
- Limited set of (academic) implementations

• **But** ...

This could be as big a wave as public-key crypto!

Imagine a fancy animation here, in the cloud. *

Thank you. naras@netapp.com

* You know what I mean! 🙂

