IoT – Impact On Storage Architecture

Girish Kumar B K NetApp 24th May 2018

IoT - Agenda

- 1) Introduction
- 2) Data growth and compute model
- 3) Industrial needs and IoT architecture
- 4) Data flow and functional architecture
- 5) Conclusions

Background: Digital transformation

Harness the power of data for competitive differentiation

Digital transformation is the integration of digital technology into all areas of a business, fundamentally changing how you operate and deliver value to customers. It's also a cultural change that requires organizations to continually challenge the status quo, experiment, and get comfortable with failure.

Manufacturing
Agriculture
Energy Management
Environment Monitoring
Building and Home Automation
Smart Cities
Transportation
HealthCare

IoT : Industry evolution and benefits

Manufacturing Benefits of Industrial IoT

Internet of Things (IoT): Enabling communication between devices, people & processes to <u>exchange useful information & knowledge that create value for humans</u> Term was first proposed by Kevin Ashton in 1999

IoT – Data growth samples

Enterprise use cases

5000 sensors/engine, 844 TB/day (10 GB/second)

4 TB/day (50 MB/s)

Autonomous Vehicle

Oil and Gas exploration

Wind Farm

20000 Wind turbines each with 150 sensors 30 TB of data to analyze in real time

1 TB/day (12.5 MB/s)

IoT – Compute Model

IT landscape is evolving from a centralized to a distributed computing model

Centralized compute model has traditionally supported the Mobile – Cloud architecture (data flows between device to cloud)

As the number of connected devices / sensors and data volume explodes, the landscape is shifting to a distributed compute model (data flows between device to edge gateway to cloud)

NetApp

IoT – Heat map of industrial sector wise needs

Manufacturing, Smart building, Smart Grid and Consumer

Need	Industry sector					
	Manufacturing	Buildings & Facilities	Energy & Utilities	Consumer & Home		
Mobility	55	10	10	55		
Ultra Low latency (<10ms)	95	85	5	15		
Autonomy	95	100	100	50		
Security	100	100	100	25		
Local Network Bandwith	100	90	10	35		
WAN Network Bandwith	35	55	10	55		
Peer-to-Peer Communication	80	85	50	90		
Prioritization	100	15	90	10		
Self-organization, discovery	60	20	40	65		
Artificial Intelligence/ Machine Learning	100	100	85	45		

IoT - Need evolution

IoT – Why edge ?

Factor affecting the IoT architecture

IoT – Why edge?

Factor affecting the IoT architecture

IoT – Architecture

IoT – Architecture

NetApp

Case study: Active IQ (telemetry data from deployed systems)

The new Active IQ IoT architecture leverages AFF and the Data Fabric

Value Proposition

Agility, flexibility, efficiency and lower cost

Reduced our own cost to run Active IQ environment by \$1.25M per year

	Traditional Hadoop on-premises with DAS	Active IQ platform	
Time to deploy new data pipeline	6 months	1 month	
Time to deploy new Hadoop cluster	6 months	5 minutes	
TCO	High	Moderate	
Infrastructure for AI and machine learning	Expensive	Moderate	
Cloudera Hadoop nodes needed	120	40	
Storage required	12 PB	1.3 PB	

Hybrid cloud analytics is up to 20% faster than a pure cloud based solution, while keeping the data secure and accessible from multiple clouds

Conclusions

- 1) Security, low latency, autonomy, prioritization and edge intelligence (AI/ML) continue to drive the enterprise IoT storage architecture
- 2) Hybrid cloud analytics is faster then pure cloud based solutions
- 3) Edges footprint offers opportunity to add generic or specific data management services for different industrial verticals

Thank You

Backup Slides

20 © 2018 NetApp, Inc. All rights reserved.

IoT – Architecture : Types of Data at the Edge

Properties Data Type	Purpose	Format (typical)	Per unit size	Cardinality	Storage IO Patterns
Device Registry	Devices at the edge that need enumeration	Structured (Relational)	1KB	nDevices	Read-only Writes: re- provisioning
Device Configuration	Operational config of each device	Structured (JSON)	<5KB	nDevices	Read-only Writes: re-config
Device Identity	Cryptographic data for secure communication with devices	Structured (Key-Value)	1KB	nDevices	Read-only Writes: permission revocation
Device State (Operational)	Device/ sensor data sent periodically	Record: {DeviceID,TimeStamp, Version, <blob>}</blob>	<1KB for industrial sensors <3MBps for HD media streaming	nRecords (frequency varies on conditions)	Append-only Read for Batch transfer
Edge Configuration	Operational config of IT resources at the edge	Structured (JSON)	<1MB	nModules	Read-only Writes: re-config
Digital Exhaust Data	Troubleshooting and Audit	Semi-structured (Logs, Counters)	10MB	nModules (and depends on nRecords)	Log structured Read for Batch transfer

NetApp

End of Slides

