VERITAS

Comparison of Write Back Strategies

Mahesh Khatpe, Pradeep Gothoskar

Agenda

- Introduction
- Differentiation
- Applications
- Conclusion

Introduction

Four basic concerns

- Bandwidth how many ops/sec are sustained
- **Resiliency -** how is the failure tolerance
- Restoration what is the promise of recovery
- Capacity how much of Hot/Cold data to be held

Introduction

Motivation

- The Shift of focus from \$/GB to \$/IOPs
- The Split separation of hot and cold data
- The Apps In new-age workloads such as archival and analytics have large % writes and demand low latencies
- **Relaxation** strictly Vs eventually consistent.
- Restoration Fast reads important to Applications | Fast writes, consistency, restoration important to designers

This makes write-back strategies more important now

Differentiation

Write Back & Efficiency

Write Back Cache

- Reduction in the Bandwidth in order to identify data and decide when to flush data
- Write Efficiency depends on cache line and % write.
- Cache size depends on how much latency tolerance is needed
- Write Bursts slower to absorb due to continuous flush to tier1
- Works better if there is write localization in time

Write Back Log

- No Bandwidth overhead of managing dirty data.
- Write Efficiency doesn't depend on cache line or % write.
- Cache size depends on how much space can be given to log
- Write Bursts faster to absorb due appending sequential writes
- Works better even when there is little localization in space

Differentiation

Write Pattern & Restore

Write Back Cache

- Re-read cost depends on flushing policy
- Better for higher Hot/Cold ratio
- Recovery & Restore can be costly and hard for a point in time data.
- In-line processing difficult due to continuous flush
- Sustained Performance difficult to predict and control

Write Back Log

- Re-read cost can reduce due to merge factor
- Benefits for smaller Hot/Cold ratio
- Recovery & Restore less costly and to a point in time data or versions.
- In-line processing possible, merge, reorder
- Sustained Performance easier to predict and control

- Random Writes Suffer relative to Sequential writes
- Write back strategy can expand the SLA Space

- Write fill can be predicted and controlled based on Write Flush
- Where you stage write back affects the bandwidth

25 Instances Random 70:30 read:write

Bandwidth 45K IOPs Latency 3 msec

Workload	Read/Write	Seqn/Rand	Hot/Cold	iosize	Localization	WB Strategy?
HPC	50:50	90:10	High	Large	High	WBL
VDA	10:90	90:10	Low	Large	High	WBL
Builds	80:20	30:70	Medium	Small	High	-
FileShare	70:30	30:70	Medium	Medium	Moderate	WBC
Database	~ 70:30	10:90	High	Small	Moderate	WBC
Backup	10:90	90:10	Low	Large	High	-
WebServing	90:10	~ 80:20	High	Small	Low	WBC
Search Engines	90:10	~ 40:60	High	~ Large	Low	WBC
VDI	70:30	~ 20:80	Medium	Medium	Moderate	WBL

Conclusion

You may want to try write-back-log -

- if workload has rand writes followed by high re-reads
- if workload benefits from frequent read-aheads
- if workload requires versioning restore of point-in-time
- if workload is sensitive to write latencies
- if workload has large io-sizes writes and may trigger flushes
- if workload has intense bursts of writes

Conclusion

Changing Storage world

- Value shifting to \$ / IOPs
- Separation of Cold / Hot Data
- Eventually consistent
- Point in time restore

Chose Optimal write-back strategy

- Better write-bandwidth
- Higher resiliency
- Customized restore

Thank you!

Mahesh Khatpe, Pradeep Gothoskar

mahesh.khatpe@veritas.com

pradeep.gothoskar@veritas.com

VERITAS PROPRIETARY/CONFIDENTIAL – INTERNAL USE ONLY Copyright © 2017 Veritas Technologies LLC. All rights reserved.

14 Copyright © 2017 Veritas Technologies LLC