Using Machine Learning for Intelligent Storage Performance Anomaly Detection

Ramakrishna Vadla, IBM
Archana Chinnaiah, IBM

Acknowledgement: Sumant Padbidri, Anbazhagan Mani
Agenda

• Market Estimates & Forecasts
• Applications in Storage
• Cloud Architecture
• Anomaly Detection
• Performance Anomaly Detection
AI & ML - Market Estimates & Forecasts

✔ Worldwide revenues for cognitive and AI systems will increase from $12.5B in 2017 to more than $46B in 2020

✔ IDC forecasts spending on AI and ML will grow from $12B in 2017 to $57.6B by 2021.

Number 3
Machine Learning

5 Year Growth Rate: 34%

• Published patent applications for Patent Classification G06N "Computer Systems Based on Specific Computational Models" grew at a compound annual rate of 34% from 2013 to 2017.

• This includes machine learning and artificial neural networks.

Machine learning patents grew at a 34% between 2013 and 2017, 3rd-fastest growing category of all patents granted.
AI & ML - Market Estimates & Forecasts

Machine learning: things are getting intense

Deloitte Global predicts that in 2018

Why Now?

- Enormously increased data - 90% data created in last couple of years
- Substantially more-powerful computer hardware – CPU, GPU
- Cloud makes big data more widely accessible
- Significantly improved algorithms

Source: Deloitte Global Predictions 2018 Infographics
Machine Learning Applications in Storage

Applications

- **Predictive Analytics**
 - Capacity Forecasting – (Regression)
 - Power consumption in data centers – (Regression)
 - Tracking of known issues - Learn from other customer issues - (Classification)
 - Predicting blocks to be accessed in near future (Recommendations)

- **Performance anomaly detection**
 - Performance metrics analysis (Time-series data analysis)
 - Automated Triaging and Root Cause Analysis (Classification)
 - Log analysis - (Clustering)

- **Configuration best practices recommendations**
 - Manual upgrades/Automated upgrades
 - Configuration validation to avoid interruptions in service

- **Intelligent Performance Tuning**

Value Proposition

- Prevent Issues proactively before they occur.
- Avoid downtime & Achieve uptime 99.999%
- Cost efficiency - Reduce storage & operational costs
- Data Storage Optimization
- Simplifying the support
- Proactive notification of risks and health checks
Cloud Architecture - Storage Analytics

The world’s most valuable resource is no longer oil, but data

- Cloud based scale-out architecture.
- Storage systems support data collection with high frequencies, seconds, minutes.
- More data available for analysis.
- Data lake based on NoSQL such as Cassandra deployed on the cloud.
- All clients send storage metric data to cloud – performance, config and health data.
- Multi-tenancy support.
- Support for integration of ML tools.

www.economist.com
Machine Learning – Anomaly Detection

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised Learning</td>
<td>Predict based on training data containing desired outputs.</td>
</tr>
<tr>
<td></td>
<td>• Training data contains normal and anomaly labelling</td>
</tr>
<tr>
<td></td>
<td>• Regression, Classification, Decision trees, Random forests, K-Nearest Neighbor, SVM</td>
</tr>
<tr>
<td>Unsupervised Learning</td>
<td>Doesn’t include desired outputs, goal to discover patterns</td>
</tr>
<tr>
<td></td>
<td>• No labels provided – assumption anomalies are very rare compare to normal</td>
</tr>
<tr>
<td></td>
<td>• Clustering - K-Means, Hierarchical, DBSCAN, Time-series analysis, ARIMA</td>
</tr>
<tr>
<td>Semi-supervised Learning</td>
<td>Training data includes a few desired outputs</td>
</tr>
<tr>
<td></td>
<td>Training data contains only normal labelling</td>
</tr>
<tr>
<td>Reinforcement Learning</td>
<td>Rewards from sequence of actions</td>
</tr>
<tr>
<td></td>
<td>Agent -> Action -> Environment -> Reward & State -> Agent (Markov Decision Process)</td>
</tr>
</tbody>
</table>
Storage Performance Challenges

Bottlenecks
- Disk failure/Inaccessible disks
- Read/Write I/O errors
- Volume issues
- Port masking
- Configuration issues – Host, Storage subsystem, port, Interoperability
- Network congestion
- Workload configurations
- UPS battery failure
- Port protocol errors,
- Port congestion

Metrics
- I/O Rate R/W,
- Data Rate R/W,
- Response time R/W,
- Cache hit R/W,
- Data block size R/W,
- Porta data rate R/W,
- Port-local node queue time

Correlations
- CPU & Network Traffic
- CPU & Memory
- Port & Host counters
- IOPs, read rate, & CPU, memory
Performance Anomaly Detection

Clustering – Outlier detection

K-Means

DBSCAN
Performance Anomaly Detection

Time Series Anomaly Detection

• ARIMA - AutoRegressive Integrated Moving Average

IOPs Rate Anomaly
Log Analysis – Anomaly Detection

Log Collection

Log Parsing

Feature Extraction
- [timestamp, device, process state].

Anomaly Detection

Time-series Analysis
Q & A
Thank You