Gluster can't scale - Is it a reality or a past?

Atin Mukherjee

Engineering Manager, Red Hat Gluster Storage

- ■Brief about GlusterFS Scaling bottlenecks in Gluster □How did (and are) we overcoming them Projects/features like GlusterD2, brick multiplexing, sub-directory fuse mount, flexi sub vol.
- □Q&A

What is GlusterFS

- A general purpose scale-out distributed file system.
- Aggregates storage exports over network interconnect to provide a single unified namespace.
- Filesystem is stackable and completely in userspace.
- Layered on disk file systems that support extended attributes.

Some key terminologies

□Trusted Storage Pool (TSP) - Trusted Storage Pool (cluster) is a collection of storage servers.

- □Peer Node in the cluster
- □Volume A volume is a logical collection of bricks

□Brick - A brick is the combination of a node and an export directory – for e.g. hostname:/dir

Present..

- RHGS cluster of ~150 nodes run in production deployments (with some caveats)
- Community version ~200-250 nodes (with some caveats)
- With OpenShift Deployments, ~600 volumes on a 3 node cluster. (Yes! Thanks to brick multiplexing feature)

Scaling bottlenecks

- Node scalability
 - Is 150 nodes deployment in hybrid cloud sufficient with the growing storage demand?
 - 1000 nodes cluster even be a reality?
 - GD1 (GlusterD 1) ====> GD2 (GlusterD2)
 - GD2 (released as tech preview with GlusterFS 4.0) will become the default management plane for Gluster in coming releases

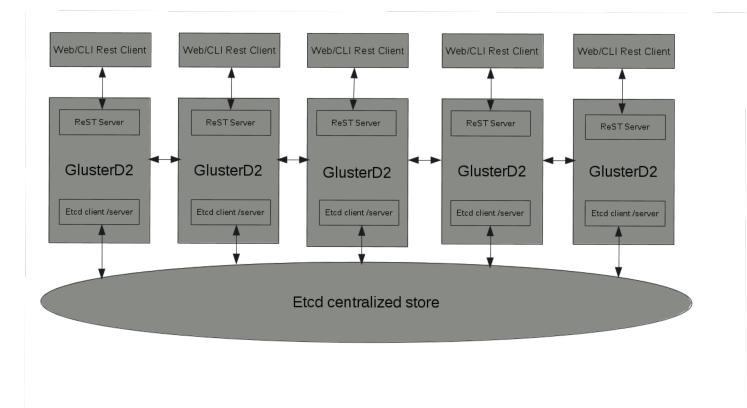
Scaling bottlenecks – Node scalability

• GlusterD - Manages the cluster configuration for Gluster

Peer membership management

Elastic volume management

Configuration consistency


Distributed command execution (orchestration)

Service management (manages Gluster daemons)

Scaling bottlenecks – Node scalability

- . Limitations of GD1
 - Non linear node scalability
 - Lack of native ReST APIs
 - Code maintainability and easier feature integrations in the form of plugins
- What's in for GD2
 - Centralized store (etcd)
 - Better transaction framework
 - ReST API support
 - Intelligent Volume Provisioning

Node scalability - GD2 Architecture

Scaling bottlenecks

- Volume scalability
 - Thousands of volumes in cluster?
 - Brick Multiplexing

Volume scalability – Brick Multiplexing

- Brick Multiplexing (GlusterFS 3.10 onwards)
 - 1:1 process & brick ===> 1:Many process & bricks
 - Reduced resource (Port, Memory, CPU) consumption
 - Not a performance enhancer!
 - One of the gluster core salient features for container native storage's success.

Other ways to scale

- Fuse based sub directory export (GlusterFS 3.12 onwards)
 - Single volume, sub directory based isolation for different clients
 - Namespace access control through auth.allow
 - Gluster snapshots need to work at volume level

Other ways to scale

- Gluster sub-vol (https://github.com/gluster/gluster-subvol)
 - Use subdirectories of Gluster volumes as persistent volumes in openshift.io
 - glfs-vol a flex volume plugin to allow mounting Gluster subdirectories into containers.
 - Uses xfs quota for setting up quotas for the directory based space control.

Other scaling challenges

- Resource control
- . Debugg-ability
- User experience

- Reach us @
 - <u>gluster-devel@gluster.org</u>
 <u>users@gluster.org</u>

– IRC : #gluster, #gluster-dev @freenode