

Persistent Memory

Persistent Memory

- Media vs. access/implementation (NVM)
- Programing model
- SNIA TWG Work
- Security
- Alliances/Use-cases

Persistent Memory

Persistent Memory (PM) Technology

is a type of Non-Volatile Memory (NVM)

Disk-like non-volatile memory

- Persistent RAM disk
- Appears as disk drives to applications
- Accessed as traditional array of blocks

Memory-like non-volatile memory (PM)

- Appears as memory to applications
- Applications store data directly in byte-addressable memory

SN

• No IO or even DMA is required

Persistent Memory Programming: The Current State and Future Direction

♦ June 2012

- Formed the NVM Programming TWG
- Immediate participation from key OSVs, ISVs, IHVs

January 2013

Held the first PM Summit (actually called "NVM Summit")

January 2014

• TWG published rev 1.0 of the NVM Programming Model

Linux:

DAX Support is shipping ext4 is PM-Aware XFS is PM-Aware PMDK support

More filesystems coming

VMware: Virtualization of PM

Persistent Memory (PM) Modes

NVM.PM.VOLUME Mode

- Software abstraction for persistent memory hardware
- Address ranges
- Thin provisioning management

NVM.PM.FILE Mode

- Application behavior for accessing PM
- Mapping PM files to application address space
- Syncing PM files

◆ 2017 was an interesting year for demos...

SAP SAPPHIRE Oracle OpenWorld

Built on the Persistent Memory programming model!

© 2018 Storage Networking Industry Association. All Rights Reserved.

Persistent Memory Developer Kit pmem.io

Complex transactions, allocation handled by libraries

- No "flush" calls to manage in most cases
- Each ISV doesn't have to re-invent
- Performance tuned (esp for future enhancements)
- Licensing is very liberal
 - Steal all the code you want!

PMDK is a convenience, not a requirement

• Build your own library if you like!

http://snia.org/PM

Specs, workgroups, webcasts, videos, presentations

http://pmem.io

- PMDK and other persistent memory programming information
- <u>http://pmem.io/documents</u>
 - Links to publications, standards, Windows & Linux info

TWG Work

TWG Ongoing Work SN

Security

PM Hardware Security Threat Model

Remote persistent memory (via RDMA)

- Ongoing optimizations for RDMA worked in multiple forums
- Remote asynchronous flush (under discussion)

Higher-level Semantics

As we learn more..

Updating Original Work

Error handling

- Additions to V1.2 of the programming model specification
- Refinements to error handling annex

Atomicity

- New white paper
- Introduces PM data structure libraries with atomicity built in
- Enables PM transactions

Persistent Memory Security

- This work documents approaches for encryption of data on persistent memory (PM); particularly considering unique characteristics of PM.
 - Discover gaps in existing technologies related to PM security
 - Create a treat model and suggest requirements that could resolve these gaps
- The NVM Programming TWG has established an alliance with the Trusted Computing Group (TCG) outlining a collaboration between the SNIA NVMP TWG, TCG. The collaboration is structured as follows.
 - * SNIA provides application/user level roles, behaviors and threat models
 - TCG provides security protocol definitions
- TCG, SNIA also approaching JEDEC
 - * JEDEC provides NVDIMM specific specifications

Many aspects of security are unchanged by PM

- Administrative security
- Key management
- Memory protection

First order requirement: encryption of data at rest

- Authentication/Re-authentication Triggers
- Real time encryption mechanics
- Continuity of principal identity

Protection granularity at the file and volume layers

- Device, partition or volume protection of data at rest
- Memory mapped file access authorization enforcement

Achieving isolation analogous to external storage

- Limiting access enablement windows
- Rapid privilege transition

- Private speaks to multi-tenancy HW support
- Both encryption at rest, issues from prior 2 slides

SN

Alliances/Use Cases

REMOTE PERSISTENT MEMORY

REMOTE ACCESS FOR HA SOFTWARE MODEL

RDMA for HA During msync or opt_flush

Remote Access for HA white paper released:

http://www.snia.org/sites/default/files/technical_work/final/NVM_PM_Remote_Access_for_High_Availability_v1.0.pdf Requirements for consistent data recovery, for efficient remote optimized flush

SNIA & OPENFABRICS ALLIANCE

Backup

- Customer Security Principal/Data Owner Organization
- Developer Storage/Application Developer, DevOps
- Security Officer Security Rights Assigner
- Administrator System configuration manager
- Deliver-er/Repair-er Factory/Channel Support, Supply Chain

Threat N				
Attack		Attacker	Applicable existing approach	New issues with PM
Cross-Tenant	Privacy/ Confidentiality	Tenant, Administrator, Repair-er	Traditional authorization, authentication. Encryption at rest. Separation of roles. Memory protection.	None
	Integrity	Developer, tenant, administrator	Traditional authorization, authentication. Separation of roles. Memory protection.	Increased scope of damage due to mismanaged pointers, memory resources
	Availability – denial of service	Tenant, Developer	Per-tenant QoS	Potential for rapid disruption with limited detection window

Threat N				
Attack		Attacker	Applicable existing approach	New issues with PM
Cross-Tenant	Tenant, Administrator	Tenant, Administrator, Repair-er	Secure erasure (physical or cryptographic) during deletion	More rapid free space recycling in memory than disk.
Insider	Local HW attacks (e.g. DMA)	Tenant, Administrator, Developer	Memory Protection, Per-tenant QoS applied to IO	
	Remote access threats (e.g. RDMA)	Tenant, Administrator, Developer	RDMA security, s-tag, range access enforcement	

© 2018 Storage Networking Industry Association. All Rights Reserved.

Threat M	SNIA ®			
Attack		Attacker	Applicable existing approach	New issues with PM
Insider	Malware	Developer, deliver-er, repair- er, Administrator	Digital signing, virus protection	
	Access by admin/support	Administrator	Role separation, authentication/ Authorization	