

Recommendation Engine For Data Eviction Policy Selection

Divyank Shukla Msys Technologies Pvt Ltd

Table of Contents

- Problem Description
- Approaches

19

SNIA INDIA

0

- Understanding the Data
- Basics Statistics
- Modelling System States
- Lessons Learnt And Outcomes

Problem Description

■ Ability to Advice clients :

- "If we migrated[evicted] this extent our client will experience fall in IO latency by x% points"
- "If we added one more VM, to the Controller, the IO latency for existing client will reduce by x% points"
- "If we promoted this extent our IO latency for 80% of customers will improve by y%"

IO Controller Outline / Framework

2019 Storage Developer Conference India © All Rights Reserved.

Framework and Metrics

- Threads for admitting, processing and communicating responses for Requests.
- Requests Split to Operations
- Operations (Ops) may get Queued
- Ops contend Locks, experience Wait times
- Ops's Responses communicated to clients.

Request Latency, Wait times, Request Rates etc

 SD
 2019 Storage Developer Conference India © All Rights Reserved.

Exploring The Problem Space

- □ Is it a N-class Classification Problem ?
- □ Is it a Regression Problem ?
- □ Is it a Queue Modelling Problem ?
- Can we model it as a Poisson Process ?
- □ Is it All of the Above ?

Approaches

- □ Linear Regression
- Naïve Bayes Classification
- Multi-Resource Queue Modelling
- ARIMA (Time Based Forecasting)
- Predictive State Modelling
- Neural Networks

19

SNIAINDIA

Neural Networks with Internal States

7

Basic Statistics

■ Are the variables dependent ?

19

JIA INDIA

- Cost function response to delta changes in dependent variables ?
- □ Is it linear, non-linear, parametric or not ?
- Does the response vary from time A to time B ?
- Bootstrapping, Markov Chain Monte-Carlo, Layers and Features learning

Mbps Plot Vs Normalized IOps

Plot of Latency Vs CPU

2019 Storage Developer Conference India © All Rights Reserved.

SNIAINDIA

System's Wait Matrix for Normalized Read

RpcReadNormalized

Data

▼ : X A1 fx \checkmark timestamp Е В \land D A U avgThroughputNormalizedlOps avgRequestsQueued avgThroughputlOps avgLatencyMs avgThroughputlOps timestamp 2019-04-18T11:01:33-07:00 2019-04-18T11:02:34 0.0658182 0.0658182 0.735073 4.83812E-05 0.0658182 3 2019-04-18T11:03:34-07:00 2019-04-18T11:04:35-07:00 2019-04-18T11:05:30 6 0.0659136 0.0659136 0.712327 4.69521E-05 0.0659136 2019-04-18T11:06:37-07:00 8 2019-04-18T11:07:37 0.0658619 0.0658619 1.08836 7.16811E-05 0.0658619 9 2019-04-18T11:08:38-07:00 10 2019-04-18T11:09:39 0.0329149 0.0329149 0.926226 3.04866E-05 0.0329149 11 2019-04-18T11:10:40 0.0658619 0.0658619 0.0658619 0.574063 3.78089E-05 19 12 **SNIAINDIA** 2019 Storage Developer Conference India © All Rights Reserved.

2019 Storage Developer Conference India © All Rights Reserved.

2019 Storage Developer Conference India © All Rights Reserved.

SD (P SNIAINDIA

2019 Storage Developer Conference India © All Rights Reserved.

Inference / Observations

- Projections are continuous in low dimensional space and similar histories get clustered
- Parameter sharing among similar histories
- K-State Markov Model (HMM, Memory less model)
- Predictive State Representative Models
- Time Varying Models
- StateFul Neural Networks Models (RNN ?)

Context Sensitive Models

Time Sensitive Models

- ARIMA
- D NN
- RNNs
- RNNs with LSTM (Vanilla LSTM)
- RNN Bidirectional LSTM
 RNN ESN LSTM

2019 Storage Developer Conference India © All Rights Reserved.

ARIMA

Pros

- Dependent on relationship with past observations
- Uses differences of Raw Observations

Cons

- Lag or the size of the Moving Average window be known
- The number of times, the Raw Observations, are differenced
- The number of Raw Observations

Neural Networks

Pros

- Works slightly better when it comes to Classification Problems
- Can be deployed to predict almost any thing

Cons

- No insights for the reason why it did or did not work
- Treats samples as just observations
- Has no mechanism to predict for Time series data

Context Sensitive Time Variant Models

SD (9

SNIAINDIA

21

RNN

Pros

- Works better when data has time variations
- Memorizes sequences well
- □ Has dynamic state with context-dependent computation (Vs HMM)

Cons

- Are not necessarily Inductive
- Problem of Vanishing and Exploding gradients
- Results vary abruptly based on Models/Layers chosen

RNNs with LSTM

Pros

- Embeds integrators for memory storage in network
- Remembers sequence to predict the outcomes

Cons

- Internal States must be selected to use memory, not abuse.
- Works very bad when all the data is correlated
- Poor results when times series responses are chaotic

RNN Stacked LSTMs

Pros

- Create new representations at high levels of abstractions
- Increasing depths trade off with fewer neurons that trains faster

Cons

- Involve huge computational resources
- Not a silver bullet

Results

25

Futures and Scope

RNN ESN LSTMs

Pros

- Work well for chaotic time series
- Reservoirs show non-linearity w.r.t inputs
- Outputs show linear regression

Cons

19

SNIA INDIA

0 6

Training is a challenge

Scope and Futures

- CSPs can use this Recommendation Engine to make decisions regarding Eviction Policy to improve SLAs.
- Traditional methods of modelling unable to catch up with the complexities of the system
- RNN, LSTMs, Stack LSTM, ESN provide us with huge scope to tune the model
- Models Vs Complex or Stacked Models share similar relationship as series and Fourier series

Queue Analysis

- Dispatching Discipline
 - Priority Based, FCFS
- Distribution of Arrivals
 - Poisson
- Distribution of Service Times
 - Depends on Request Size
 - Rate of Requests
 - The state of the system.

Queue Analysis

0 🖽

- **D** L = $\lambda * \dot{W}$ Little's Law
- Service Time/Response Time = 1 Utilization
 □ (R_T S_T)/R_T = Utilization

$$\square W(t+1) = W(t) + \sum_{z=0}^{T} s(t-z-1) e_h(t-z)^T$$

Central Limit Theorem

0 😐

Bibliography and Credits

- Reservoir Computing Approaches to Recurrent Neural Network Training
- Learning Non-Linear Models (https://www.cs.cmu.edu/~rsalakhu/papers/dynamic.pdf)
- Credits for Graphs and Data Cleaning Rahul Tripathi
- https://drive.google.com/open?id=1I98Sel_LV4FOkY10P EfV_YLwQV-5WDgf

Q&A

Introduction of Numbers as Co-ordinates is an Act of Violence"

- Hermann Weyl

"All models are wrong some are more useful"

0 4

2019 Storage Developer Conference India © All Rights Reserved.