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Problem Description

1 Ability to Advice clients .

“If we migrated[evicted] this extent our client will
experience fall in 1O latency by x% points”

“If we added one more VM, to the Controller, the 1O
latency for existing client will reduce by x% points”

“If we promoted this extent our 1O latency for 80% of
customers will improve by y%”
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10 Controller Outline / Framework

Read I0/s MBI/s Latency
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Framework and Metrics

d Threads for admitting, processing and
communicating responses for Requests.

7 Requests Split to Operations

1 Operations (Ops) may get Queued

3 Ops contend Locks, experience Wait times

0 Ops’s Responses communicated to clients.

1 Request Latency, Wait times, Request Rates etc
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d

d
d

Exploring The Problem Space

s it a N-class Classification Problem ?
s it a Regression Problem ?
s it a Queue Modelling Problem ?

7 Can we model it as a Poisson Process ?
3 Is it All of the Above ?
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Approaches

0 Linear Regression

d Naive Bayes Classification

d Multi-Resource Queue Modelling

d ARIMA (Time Based Forecasting)

0 Predictive State Modelling

3 Neural Networks

3 Neural Networks with Internal States
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Basic Statistics

a3 Are the variables dependent ?

d Cost function response to delta changes in
dependent variables ?

3 Is it linear, non-linear, parametric or not ?
d Does the response vary from time A to time B ?

3 Bootstrapping, Markov Chain Monte-Carlo,
Layers and Features learning
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Mbps Plot Vs Normalized 10ps
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Plot of Latency Vs CPU
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System's Wait Matrix for Normalized Read

RpcReadNormalized
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AdmitThread_busy
~— FrameworkThread_busy

— FileopsEngineReadThread_busy
GenericSocketThread_busy
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Inference / Observations
3 Projections are continuous in low dimensional space and
similar histories get clustered
0 Parameter sharing among similar histories
0 K-State Markov Model (HMM, Memory less model)
0 Predictive State Representative Models
a3 Time Varying Models
d StateFul Neural Networks Models (RNN ?)
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Context Sensitive Models
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Time Sensitive Models

07 ARIMA

3 NN

0 RNNs

7 RNNs with LSTM (Vanilla LSTM)
3 RNN Bidirectional LSTM

7 RNN ESN LSTM
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ARIMA

3 Pros

Dependent on relationship with past observations
Uses differences of Raw Observations

7 Cons

Lag or the size of the Moving Average window be known
The number of times, the Raw Observations, are differenced
The number of Raw Observations
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Neural Networks

3 Pros

Works slightly better when it comes to Classification Problems
Can be deployed to predict almost any thing

7 Cons

No insights for the reason why it did or did not work
Treats samples as just observations
Has no mechanism to predict for Time series data
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Context Sensitive Time Variant Models
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RNN

3 Pros

Works better when data has time variations
Memorizes sequences well
Has dynamic state with context-dependent computation (Vs HMM)

0 Cons
Are not necessarily Inductive
Problem of Vanishing and Exploding gradients
Results vary abruptly based on Models/Layers chosen
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RNNs with LSTM

3 Pros

Embeds integrators for memory storage in network
Remembers sequence to predict the outcomes

0 Cons
Internal States must be selected to use memory, not abuse.
Works very bad when all the data is correlated
Poor results when times series responses are chaotic
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RNN Stacked LSTMs

3 Pros

Create new representations at high levels of abstractions
Increasing depths trade off with fewer neurons that trains faster

7 Cons

Involve huge computational resources
Not a silver bullet
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Results

0.5 4 —— Simple LSTMs
—— Variational LSTMs
—— Stacked LSTMs

0.04 1

0.03 1

loss

0.02 1

0.01 1
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Futures and Scope

7 RNN ESN LSTMs

a3 Pros
Work well for chaotic time series
Reservoirs show non-linearity w.r.t inputs
Outputs show linear regression

d Cons
Training is a challenge
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Scope and Futures
d CSPs can use this Recommendation Engine to make
decisions regarding Eviction Policy to improve SLAs.

0 Traditional methods of modelling unable to catch up with
the complexities of the system

3 RNN, LSTMs, Stack LSTM, ESN provide us with huge
scope to tune the model

7 Models Vs Complex or Stacked Models share similar
relationship as series and Fourier series

SDC

SNIAINDIA 2019 Storage Developer Conference India © All Rights Reserved. 27
@ E ST e B L) (L] o Y



Queue Analysis

1 Dispatching Discipline
Priority Based, FCFS

a Distribution of Arrivals
Poisson

a Distribution of Service Times
Depends on Request Size
Rate of Requests
The state of the system.
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Queue Analysis

Waiting line
(queue) Dispatching
Arrivals digplincb Departures
» ., Server »
A = arrival rate
|‘ .l T, = service time
w = items waiting p = utilization

T,, = waiting time

- |

r = items resident in queuing system

S D @ T, = residence time
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Law’s At Play

7 L =21+« W Little’s Law

a3 Service Time/Response Time = 1 — Utilization
(Rt - St )/Ry = Utilization

O WE+1D)=WE)+Xl_os(t—z—1)e,(t—2)T

[ Central Limit Theorem
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Q&A

7 “Introduction of Numbers as Co-ordinates is an

Act of Violence”
- Hermann Weyl

3 “All models are wrong some are more useful”
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