SDC

SNIAINDIA

Highly Scalable
Cognitive Storage Management Platform
Using Cloud Native Services

Ramakrishna Vadla, IBM
Maneesh Rapelly, IBM

Acknowledgement : Sumant Padbidri, Anbazhagan Mani



Agenda

* Server Downtimes and Consequences

* Storage Management Evolution

* Next Generation Storage Management Platform
* Cognitive (Al) Storage Management Platform

* Predictive Analytics

* Scalability



Server Downtimes and Consequences

Average cost per hour of enterprise server downtime worldwide in 2017 and 2018
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Storage Management Evolution

/ Storage Manager - Per Device Type\

Manager Manager Manager
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v’ Each storage device type has it own management
module

v’ Challenges
* No consolidated view of the storage

* Management complexity — Login to multiple consoles to monitor
the devices

* Difficult to debug the problems those are part of the other devices
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Storage Manages - All Devices

Manager Manager

Storage _-
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v Consolidated view of all the storage devices including third party
devices

v' On-premise deployment on dedicated server

v Challenges
* Dedicated resources for deployment
*  Support issues — turn around time is more to debug the issues
*  No information about the other deployments
*  Scalability is the challenge
«  HighTCO
*  Running predictive analytics




Next Generation Storage Management Platform

v’ Deploy thin Meta Data Collection Service in client data
center that connects to storage devices

v Run all the data processing micro services on the cloud
v’ Supports thousands of tenants with less resources

v" Highly Scalable and reliable using cloud auto scale feature
* Horizontally
e \Vertically

v’ Processing of billions of metrics per minute
v’ Recover from site disasters (DR)
v Secure — data in motion, data at rest, RBAC

v’ Data lake based on NoSQL such as Cassandra deployed on
the cloud.

v’ Predictive analytics
v’ Proactive support - faster time to resolution

v’ Different roles of the organization can view the same
details
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Cloud Native Services Based Architecture

v’ Microservice based architecture
v’ Data Services — Kubernetes and Containers

Highly scalable using advanced auto scale features
High Availability and reliability

v Lambda/Cloud functions — Used for small repetitive tasks that
can be processed in less time

v’ Data Lake — No SQL such as Cassandara database, AWS
DynamoDB, Azure datalake

v’ Meta Data Storage — Object storages such as IBM Cloud
Object storage, AWS S3, Azure object store

v’ Messaging Service - Kafka-as-a-service platform from
IBM Cloud, AWS Streaming service

v’ LogAnalytics — Elasticsearch (ELK) service from Cloud -
Elastic, IBM Cloud, AWS

v'ML/DL service using IBM Watson/ Amazon Sagemaker
/MS Azure ML
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Cognitive (Al) Storage Management Platform

Performance prediction in heterogeneous environments

Tracking of known issues - Learn from other customer issues -
(Classification)

~ N
v" Predict Data Traffic issues — high response times/declines in . d : j,
throughput M | : Y
* Noisy neighbor (Correlation Analysis) * Device Failures A
. =
+ Slow responding Hosts (Correlation Analysis) * Network Failures IBM Watson P
Analyze patterns and correlate with other customer datasets e Protocol Failures Al Services | ; \

e Application Failures

Data Center
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Performance anomaly detection e N
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Al Based Predictive Analytics

Predict Data Traffic Issues — High response times/Declines in throughput

» Goal — Find a host that causes data traffic issues - high response times/decline in throughput
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Al Based Predictive Analytics

Predict Data Traffic Issues — High response times/Declines in throughput

» Goal — Find a host that causes data traffic issues - high response times/decline in throughput

Slow responding hosts

* FC port buffer is not utilized properly by hosts
e Difficult to find the host.
* Host with highest correlation is the culprit
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Configuration & Log Analytics

v’ Configuration Analytics
v’ Different versions of storage devices deployment report
v’ Total amount of storage (PB) deployed across the customers
v’ Different type of storage devices deployed
v No. of devices deployed across geo

v’ Customers require upgrades

v’ Log Analytics

v" Errors

v' Warning

logstash

N

‘
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Elastic - Opensource distributed real time data search

and analytics index based database engine with schema free
JSON documents

Logstash — Ship logs from any source, parse them, get the Meta Data

Collection

right timestamp, index them, and search them. Service
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Kibana — Data visualization engine allows to natively interact ;' :‘
with data via custom dashboards ' '

\_ Client Data Center - \_ Client Data Center _/



Highly Scalable Platform

Scalability based on Cloud native micro services — Kubernetes & containers

v" Application expected to be available Kubernetes Cluster 4 . \
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Highly Scalable Platform

Scalability based on Cloud native micro services — Kubernetes & containers

* Scale a deployment to fixed
number of replicas: --replicas=10

* Horizontal pod autoscaling
* --min —max —cpu-percent

Client app sends

* Proportional scaling:

request to 3} .
‘mycluster. Request sent to
° . H containers.appdomain. ALB IP:
support running multiple e oo

versions of an application at
the same time

* When rolling update is in
progress, balances the
additional replicas in the
existing active ReplicaSets.

mycluster.

containers.appdomain.
cloud

y

ALBIP:
169.xx.XX.XX

* Exposing the service:
 NodePort
e Load Balancer
e Kubernetes Ingress
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Worker pool

Worker Node
(2 Pod
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Container Container

Instance 1 Instance 2

of myapp
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