

Optimizing Data Centers for IoT Revolution

Geet Chauhan, Kishor Jadhav Microchip

- Introduction
- IoT Revolution
- Data Explosion
- Data Centers
- Future

2019 Storage Developer Conference India © All Rights Reserved.

Introduction

2019 Storage Developer Conference India © All Rights Reserved.

Introduction

- A brief history of Data Centers
- Big picture of Internet of Things

2019 Storage Developer Conference India © All Rights Reserved.

Evolution of Data Centers

SNIAINDIA

	Legacy	Consolidated	Virtualized
Compute	×86	Distributed Farm nodes	Fully virtualized
Storage	DAS	NAS	SAN, vSAN, Object, SaaS
Network	Ethernet	Ethernet	vLAN, NaaS
Applications	Stand alone	Centralized	Optimized, On Demand
Management	Siloed	Cluster	VM Farm
	Long time ago	Some time ago	Now
			-

2019 Storage Developer Conference India © All Rights Reserved.

Big Picture of Internet of Things

2019 Storage Developer Conference India © All Rights Reserved.

IoT Revolution

2019 Storage Developer Conference India © All Rights Reserved.

7

Core Tenets of IoT

- Data capture
- Data filtering and pre-processing
- Data storage
- Data analytics and predictions

0 4

2019 Storage Developer Conference India © All Rights Reserved.

IoT and Data

- What does it mean in terms of 'data'?
- What does it mean in terms of 'data at scale'?
- What do we know about 'managing big data'?
- What do we do about 'security', 'QoS', 'privacy', 'vulnerabilities', 'standardization'?

Sensors

Sensor Networks

Multiple sensors and coverage

Types of Sensors

- Aerial
- Terrestrial
- Underground
- Underwater
- Multimedia
- Mobile

0 😐

Challenges with Sensors

- Limited storage capacity
- Limited processing power
- Power source
- Power requirements change with range
- Passive sensors generate small amounts of energy
- Distance between data creation spot and data analytics engines
- Signal strength and amplification

IoT Application Areas

Data Explosion

2019 Storage Developer Conference India © All Rights Reserved.

Data Explosion

 IoT hits all the three V's of Big Data premise

- Volume
- Velocity
- Variety

- Example industries
 - Healthcare
 - Agriculture
 - Defense
 - Automotive
 - Retail

2019 Storage Developer Conference India © All Rights Reserved.

Volume

- Increasing use of IoT devices
- Forecast of multi billion devices with multi billion sensors
- Ever increasing number of application areas
- Huge amount of sensor generated data
- **Zettabytes of data will be stored per day**

Velocity

Speed of data generation / processing

- Types
 - Batch
 - Periodic
 - Near real time
 - Real time

2019 Storage Developer Conference India © All Rights Reserved.

- Unstructured data
 - Text files & documents

- e-mail, voice mail
- Images
- AV files
- Sensor data
- Application logs

- Structured data
 - Database
 - Data structures
 - Can be queried into
 - Follows a schema

0 4

Data Center Optimization

2019 Storage Developer Conference India © All Rights Reserved.

Areas of Optimization

- Periodicity of data collection
- High bandwidth data transport
- High speed data stores for
 - Storage
 - Retrieval
- Fast data ingestion into ML algorithms

0 4

Optimization before Reaching Data Centers

- Increase intelligence in edge devices
 - Make processing closer to generation point
 - Have a micro server in between end point and cloud
- Efficient decision algorithms to chose data variety to be stored
- Smart data filters
- Run smart decision engines on edge devices

Optimization after Reaching Data Centers

- High speed storage switching fabric
- High speed storage controllers
- Data deduplication
- Object storage

0 4

Optimizing Data Center Storage

- Data stores
 - High speed flash storage
 - Storage tiering
 - Hyper converged infrastructure
- Data availability
 - High speed storage controllers
 - High speed storage switches
 - Storage controllers with high IOPS

2019 Storage Developer Conference India © All Rights Reserved.

QoS and Efficiency

- Data reliability and integrity
- Quality of Service
- Efficient storage
 - Power efficient storage arrays
 - Thermally efficient

0 😐

Optimizations for ML Applications

- □ Low power consumption.
- High throughput and flexibility.
- High use of GPU for different areas like: deep learning, machine learning, image classification, speech recognition, autonomous driving, bioinformatics and video analytics.
- Support the need for growing parallel computing growth.

Optimizations for ML Applications

- High performance fabric connectivity and composability for multihost CPU and NVMe SSD systems is critical.
- Dynamic partitioning.
- Multi host SR-IOV sharing.
- Enable real time "composition" or dynamic allocation of GPU resources.

Optimization for ML Applications

PCle Gen 3.0

0 4

PCIe advanced switch solutions

Scalable

Cost-effective multi host interconnect

Low latency

Fabric application programming API

2019 Storage Developer Conference India © All Rights Reserved.

Optimizations for ML Applications

- Scaled view
- Multi node
- High Availability at fabric

2019 Storage Developer Conference India © All Rights Reserved.

Solutions for ML Appliances

SDC SNIAINDIA

2019 Storage Developer Conference India © All Rights Reserved.

Optimization using Rack Scale Design

- No single data center fabric is cost, power and performance optimal.
- Media and CPU disaggregation for maximizing platform flexibility, density and utilization.
- Optimize resource utilization and reduce "resource stranding".
- Using storage switching and pooling solutions help storage disaggregation and dynamic hybrid pool support.
- PCIe switching and dynamic partitioning capabilities enable high speed NVM pools at lowest latency and power.

Optimization using Rack Scale Design

- Top of Rack (ToR) Switch
- RSD Rack Management Switch
- RSD Ethernet Storage Drawer
- RSD PCIe Storage Drawer
- RSD SAS Storage Drawer
- RSD Computer Drawer

0 4

2019 Storage Developer Conference India © All Rights Reserved.

RSD – ToR Switch

2019 Storage Developer Conference India © All Rights Reserved.

RSD – Rack Management Switch

SD (P SNIAINDIA

2019 Storage Developer Conference India © All Rights Reserved.

RSD – Ethernet Storage Drawer

2019 Storage Developer Conference India © All Rights Reserved.

RSD – PCle Storage Drawer

2019 Storage Developer Conference India © All Rights Reserved.

RSD – SAS Storage Drawer

2019 Storage Developer Conference India © All Rights Reserved.

RSD – Compute Drawer

2019 Storage Developer Conference India © All Rights Reserved.

Future

2019 Storage Developer Conference India © All Rights Reserved.

- - -

IoT and Edge Computing

- Need for decision in milliseconds require pushing towards computing and decision making at the edge.
- Technology induced latency is a curse.
- Sensing, learning, decision making and reacting faster than ever requires moving on the spot analytics closer to data creation.
- In future, most of the sensor data generated would never reach a data center.
- The goal is to reduce dependency on traditional data centers for the intelligence.

Edge Computing Application Areas

- Data gathering, filtering and pre-processing
- Analytics
- Security
- Location Based Services
- Asset management (autonomous logistics machinery)
- Mining with Robots

And more ...

Data Centers Would Still Evolve

Use of Persistent Memory in data center storage stacks

- Typical NVDIMM target application areas
- Low latency lookups
- Byte level data processing
- Fast in-memory workloads and faster IOPs

Data Centers Would Still Evolve

Use of Computational Storage in data centers

- Using Computational Storage Device (CSx); Drive, Processor and Arrays
- Gen-Z adoption in the industry

Thank You

2019 Storage Developer Conference India © All Rights Reserved.