Optimizing Data Centers for IoT Revolution

Geet Chauhan, Kishor Jadhav
Microchip
Agenda

- Introduction
- IoT Revolution
- Data Explosion
- Data Centers
- Future
Introduction
Introduction

- A brief history of Data Centers
- Big picture of Internet of Things
Evolution of Data Centers

<table>
<thead>
<tr>
<th>Compute</th>
<th>Legacy</th>
<th>Consolidated</th>
<th>Virtualized</th>
</tr>
</thead>
<tbody>
<tr>
<td>x86</td>
<td>Distributed Farm nodes</td>
<td>Fully virtualized</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>DAS</td>
<td>NAS</td>
<td>SAN, vSAN, Object, SaaS</td>
</tr>
<tr>
<td>Network</td>
<td>Ethernet</td>
<td>Ethernet</td>
<td>vLAN, NaaS</td>
</tr>
<tr>
<td>Applications</td>
<td>Stand alone</td>
<td>Centralized</td>
<td>Optimized, On Demand</td>
</tr>
<tr>
<td>Management</td>
<td>Siloed</td>
<td>Cluster</td>
<td>VM Farm</td>
</tr>
<tr>
<td></td>
<td>Long time ago</td>
<td>Some time ago</td>
<td>Now</td>
</tr>
</tbody>
</table>

SDC SNIA INDIA 2019 Storage Developer Conference India © All Rights Reserved.
Big Picture of Internet of Things

Control Data

Control Applications

Data Processor(s)

Data Dispatchers

Data Lake

ML Models

End User Business Logic

User Applications

Analytics

Cloud GW

Internet GW

Data Warehouse

ML Applications

Internet GW

Webserver

Mobile Applications

Web Applications

2019 Storage Developer Conference India © All Rights Reserved.
IoT Revolution
Core Tenets of IoT

- Data capture
- Data filtering and pre-processing
- Data storage
- Data analytics and predictions
IoT and Data

- What does it mean in terms of ‘data’?
- What does it mean in terms of ‘data at scale’?
- What do we know about ‘managing big data’?
Sensors

- Sensor Networks
 - Multiple sensors and coverage
- Types of Sensors
 - Aerial
 - Terrestrial
 - Underground
 - Underwater
 - Multimedia
 - Mobile
Challenges with Sensors

- Limited storage capacity
- Limited processing power
- Power source
- Power requirements change with range
- Passive sensors generate small amounts of energy
- Distance between data creation spot and data analytics engines
- Signal strength and amplification
IoT Application Areas
Data Explosion
Data Explosion

- IoT hits all the three V’s of Big Data premise
 - Volume
 - Velocity
 - Variety

- Example industries
 - Healthcare
 - Agriculture
 - Defense
 - Automotive
 - Retail
Volume

- Increasing use of IoT devices
- Forecast of multi billion devices with multi billion sensors
- Ever increasing number of application areas
- Huge amount of sensor generated data
- Zettabytes of data will be stored per day
Volumes

1.7 GB / day / 100 users

18432 bytes / day

8 bytes / sensor

64 bytes / device
Velocity

- Speed of data generation / processing
- Types
 - Batch
 - Periodic
 - Near real time
 - Real time
Variety

- Unstructured data
 - Text files & documents
 - e-mail, voice mail
 - Images
 - AV files
 - Sensor data
 - Application logs

- Structured data
 - Database
 - Data structures
 - Can be queried into
 - Follows a schema
Data Center Optimization
Areas of Optimization

- Periodicity of data collection
- High bandwidth data transport
- High speed data stores for
 - Storage
 - Retrieval
- Fast data ingestion into ML algorithms
Optimization before Reaching Data Centers

- Increase intelligence in edge devices
 - Make processing closer to generation point
 - Have a micro server in between end point and cloud
- Efficient decision algorithms to chose data variety to be stored
- Smart data filters
- Run smart decision engines on edge devices
Optimization after Reaching Data Centers

- High speed storage switching fabric
- High speed storage controllers
- Data deduplication
- Object storage
Optimizing Data Center Storage

- Data stores
 - High speed flash storage
 - Storage tiering
 - Hyper converged infrastructure

- Data availability
 - High speed storage controllers
 - High speed storage switches
 - Storage controllers with high IOPS
QoS and Efficiency

- Data reliability and integrity
- Quality of Service
- Efficient storage
 - Power efficient storage arrays
 - Thermally efficient
Optimizations for ML Applications

- Low power consumption.
- High throughput and flexibility.
- High use of GPU for different areas like: deep learning, machine learning, image classification, speech recognition, autonomous driving, bioinformatics and video analytics.
- Support the need for growing parallel computing growth.
Optimizations for ML Applications

- High performance fabric connectivity and composability for multi-host CPU and NVMe SSD systems is critical.
- Dynamic partitioning.
- Multi host SR-IOV sharing.
- Enable real time “composition” or dynamic allocation of GPU resources.
Optimization for ML Applications

- PCIe advanced switch solutions
- Scalable
- Cost-effective multi host interconnect
- Low latency
- Fabric application programming API
Optimizations for ML Applications

- Scaled view
- Multi node
- High Availability at fabric
Solutions for ML Appliances
Optimization using Rack Scale Design

- No single data center fabric is cost, power and performance optimal.
- Media and CPU disaggregation for maximizing platform flexibility, density and utilization.
- Optimize resource utilization and reduce “resource stranding”.
- Using storage switching and pooling solutions help storage disaggregation and dynamic hybrid pool support.
- PCIe switching and dynamic partitioning capabilities enable high speed NVM pools at lowest latency and power.
Optimization using Rack Scale Design

- Top of Rack (ToR) Switch
- RSD – Rack Management Switch
- RSD – Ethernet Storage Drawer
- RSD – PCIe Storage Drawer
- RSD – SAS Storage Drawer
- RSD – Computer Drawer
RSD – ToR Switch
RSD – Rack Management Switch
RSD – Ethernet Storage Drawer
RSD – PCIe Storage Drawer
RSD – SAS Storage Drawer
RSD – Compute Drawer
Future
IoT and Edge Computing

- Need for decision in milliseconds require pushing towards computing and decision making at the edge.
- Technology induced latency is a curse.
- Sensing, learning, decision making and reacting faster than ever requires moving on the spot analytics closer to data creation.
- In future, most of the sensor data generated would never reach a data center.
- The goal is to reduce dependency on traditional data centers for the intelligence.
Edge Computing Application Areas

- Data gathering, filtering and pre-processing
- Analytics
- Security
- Location Based Services
- Asset management (autonomous logistics machinery)
- Mining with Robots

And more …
Data Centers Would Still Evolve

- Use of Persistent Memory in data center storage stacks
 - Typical NVDIMM target application areas
 - Low latency lookups
 - Byte level data processing
 - Fast in-memory workloads and faster IOPs
Data Centers Would Still Evolve

- Use of Computational Storage in data centers
 - Using Computational Storage Device (CSx); Drive, Processor and Arrays
- Gen-Z adoption in the industry
Thank You