Application Consistent Backup for Containerized Workloads

JACOB JOHN ANDATHETHU (Technical Marketing Engineer [Open EcoSystems])
Agenda

1. Stateful containerization of workloads.
2. Existing data protection technologies.
3. Problem statement.
4. Application consistent backup and restore.
5. Disaster Recovery scenario.
Why Containers?

Cost Savings
- Avoid virtualization tax
- Efficiency
- Productivity

Cloud-native Apps
- Composability
- Elasticity
- Scalability

Value Acceleration
- Integrate
- Automate
- Optimize

Modernizing Apps
- Standardization
- Performance
- Portability
Why Storage Persistence?

Containers are ephemeral — data is not
There are no real stateless applications

Data persistence requirements in the enterprise have not changed
12-Factor Methodology [Factor 6]

Factor 6

- **12-factor methodology** for application development states that applications should be stateless (factor six)

- Data ought to be stored on a backing service.

- Backing service resources like databases requires persistent data.
Containerized Stateful Applications

The top 12 application components running in containers

Key Assessment: The old merges with the new

- JVM
- redis
- etcd
- NGINX
- PostgreSQL
- fluentd
- Apache
- elastic
- mongoDB
- php-fpm
- RabbitMQ
- Apache Tomcat
Persistent Storage Remains a Top Challenge for Containers

Source: CNCF
Container Storage Plugin (Dynamic Storage Provisioner.)

Open Source
Maintained and supported by NetApp

Storage orchestrator
Simplifies storage consumption by end users through Kubernetes

Cross-Platform
Supports all major NetApp storage products and services
Data Protection Solutions for Containerized Workload

Solution 1: Storage Container Plugin Snapshots (Crash Consistent Backups)

- Storage hardware vendors have **Storage Container Plugin** for dynamically provisioning volumes from the hardware.

- Snapshotting capabilities are incorporated into the Docker or Kubernetes storage container plugins.

- Volume Snapshots are taken by assigning volumes to a specific snapshot policy.

- Snapshots policy can be configured to a volume while creating the PVC.
Data Protection Solutions for Containerized Workload

Solution 2:- Storage Container Plugin CSI Standard (Crash Consistent Backups)

- Storage hardware vendors have Storage Container Plugin that conforms to the Container Storage Interface Spec (CSI)

- Volume snapshotting support was introduced in Kubernetes v1.12 as an alpha feature.

- Similar to PersistentVolume and PersistentVolumeClaim APIs which are used to provision volumes, VolumeSnapshotContent and VolumeSnapshot API resources are provided to create volume snapshots.

- This provisioning is based on VolumeSnapshotClasses
Data Protection Solutions for Containerized Workload

Solution 3: Open Source Tools (Crash Consistent Backups)

- Helps in taking backup and pushing the data to the cloud provider of choice.

- Backup controller watches the backup request from the users.

- BackupController begins the backup process and collects the data to backup by querying the API server for resources.

- BackupController makes a call to the object storage service to upload the backup file.
Data Protection Solutions for Containerized Workload

Solution 4: Third Party Solutions (Crash Consistent Backups)

- Backup Software Tools focuses mainly backup of containers and images.

- Streaming backups of docker containers and images found on a specific clients.

- Backup creates a tar archive for the image and saves it to the MediaAgent.

- Restores are done by uploading the image.tar file directly from the MediaAgent to the Docker host.
Problem Statement.

- Crash Consistent Backup/Restore
 - Backup doesn’t not capture data in memory or any pending I/O operations
 - Restoring requires extra work, such as journaling forward, before an application can be brought back online.
- How do we do an Application Consistent Backup/Restore for containerized workload?
Application Consistent Backup, Restore and DR.

How does Application Consistent Backup and Restore work?

- App consistent backup and restore operations involve two different layers.
Application Consistent Backup, Restore and DR.

Components

- Workflow makes use of Backup Orchestrator (Takes snapshots on the storage, metadata handling, setting up K8s B/R plugin.)

- The K8s backup plugin is run as deployment in its own namespace.

- The DB Backup and Restore plugin is deployed as a pod in the required namespace.

- The DB Backup plugin takes care of quiescing and unquiescing.

- The DB Restore plugin takes care of running recovery operations.
Discover Methodology
Discovering container workloads running in Kubernetes.

Step 1. Add Kubernetes Cluster
Step 2. Deploy the K8s Backup Plugin
Step 3. K8s Plugin will discover the cluster
Step 4. Backup Orchestrator gets the cluster data from the plugin
Discover Methodology

Discovering container workloads running in Kubernetes.

There is no match for your search criteria.

After you click Finish, you can find more information in the following areas:

- From the left navigation pane, click Monitor to view the job progress.
- At the top of the SnapCenter page, click the ? icon, and then select Getting started to find information about additional steps you might need to perform.
Backup Methodology
Application Consistent backup for Containerized Workload

Step 7. Remove the backup plugin.
Backup Methodology

Application Consistent backup for Containerized Workload
Choose snapshot for restore.

Step 1. Choose a snapshot or default to latest snapshot.

Step 2. Request a Restore.

Step 3. Request is sent to K8S Backup Plugin.

Step 4. Restore Plugin will be deployed in the NS.

Step 5. Snapshot is restored on the set of volumes.

Step 6. Backup Plugin resets the pod and check if live again.

Step 7. Restore Plugin will run recovery procedures.

Step 8. The restore plugin will be cleaned up.
Restore Methodology
Application Consistent Restore for Containerized Workload
Disaster Recovery Scenario
Disaster recovery for Containerized Applications.

Step 1: Site A functioning normal and app consistent backups are taken regularly.

Step 2: In the event of a disaster, Site A is deactivated and Site B is activated.

Step 3: Volume Snapshots are mirrored to the secondary sites.

Step 4: Kubernetes and Applications are deployed on K8s with the Persistent volume behind.
Summing Up

- Existing backup technologies for containerized workflows.

- What is application consistent backup…

- How to do a application consistent backup and restore…

- A quick look into the disaster recovery scenario.
thePub
NetApp’s Developer and Open Source Community
Engage NetApp Engineers, Partners, and Customers

thePub
netapp.io

Slack
netapp.io/slack

Twitter
@NetAppPub

NetApp
nt-ap.com/2CneVeR

GitHub
github.com/NetApp/trident