INTEL® OPTANE™ SSD PERFORMANCE ANALYSIS ON ANDROID*

Shyjumon Nankandiyil
May 23-24, 2019, Bangalore
SNIA, Storage Developer Conference - 2019
Legal Disclaimer

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of the date set forth in the configuration.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit the design or implementation of third party benchmark data or Web sites referenced in this document. Intel encourages all of its customers to visit the referenced Web sites or others where similar performance benchmark data are reported and confirm whether the referenced benchmark data are accurate and reflect performance of systems available for purchase.

Intel, the Intel logo, Intel Core, Intel Optane, Xeon, and others are trademarks of Intel Corporation in the U.S. and/or other countries.

© Intel Corporation.

*Other names and brands may be claimed as the property of others.
Agenda

- Introduction
- Software Stack
- Performance Analysis
- Conclusions & Recommendations
Introduction

INTEL IS LEADING THE WAY IN NVM TECHNOLOGY

Advances in memory technology demonstrate continued innovation

1st to 3Xnm (34nm)¹

1st to 2Xnm (25nm)²

1st 128Gb (20nm)³ with 1st integrated Hi-K Metal Gate Stack

HIGHEST DENSITY 3D NAND⁴
Up to 20% higher areal density²

INTERNET OPTANE™ TECHNOLOGY
New class of non-volatile memory

1st to 64-Layer TLC Consumer SSD (Q2’17), and Data Center SSD (Q3’17)⁶

“RULER” form factor (Q4 ‘17)

1st PCIe* QLC NAND SSDs
For data center and client⁶

1st EDSFF* SSD in Production⁹
Intel® SSD DS-P4326

1st High Capacity Persistent Memory¹⁰
Intel® Optane™ DC Persistent Memory

See Appendix 1 for footnotes.
Milestones highlighted are based on that point in time only and do not reflect current technology on the market today.
*Other names and brands may be claimed as the property of others.
INTEL® OPTANE™ TECHNOLOGY: INTEL® OPTANE™ MEMORY MEDIA

Cross Point Structure
Selectors allow dense packing and individual access to bits

Breakthrough Material Advances
Compatible switch and memory cell materials

Scalability
Memory layers can be stacked in a 3D manner

High Performance
Cell and array architecture that can switch states much faster than NAND
Hardware Media Comparison

Intel® Optane™ Memory Media

- Thin Layers of memory can be stacked to make dense memory.
- Each memory cell can store a single bit of data.
- Voltage on selector based memory cell R/W. No Transistor.

<table>
<thead>
<tr>
<th>Intel® Optane™ Technology</th>
<th>NAND</th>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Optane Memory Media + Intel Controller => Intel® Optane™ SSD</td>
<td>3D NAND/TLC/MLC/SLC</td>
<td>DRAM</td>
</tr>
<tr>
<td>Bit/Byte wise. Block Emulation also.</td>
<td>Block wise</td>
<td>Bit/byte wise</td>
</tr>
<tr>
<td>Uses a bulk material property change, of the material itself to store a bit as 0 or 1</td>
<td>Stores electrons trapped on a floating gate</td>
<td>Stores electrons on a capacitor</td>
</tr>
<tr>
<td>NVMe*/DIMM</td>
<td>NVMe/SAS/SATA</td>
<td>DIMM</td>
</tr>
<tr>
<td>No Firmware. ASIC based HW programmable. No internal DRAM</td>
<td>Firmware and Internal DRAM</td>
<td>NA</td>
</tr>
</tbody>
</table>

Other names and brands may be claimed as the property of others.
Memory & Storage Hierarchy Intel® Optane™ technology inclusive
Latency Trends

- SSD NAND technology offers ~100x reduction in latency versus HDD1
- NVMe* eliminates ~ 20 µs of latency today
- Intel® Optane™ Memory Media reduces NVM latency, offering ~ 10x reduction in latency versus NAND SSD1

1Source – Intel-tested: Average read latency measured at queue depth 1 during 4k random write workload. Measured using FIO 3.1. Common Configuration - Intel 2U Server System, OS CentOS 7.5, kernel 4.17.6-1.el7.x86_64, CPU 2 x Intel® Xeon® 6154 Gold @ 3.0GHz (18 cores), RAM 256GB DDR4 @ 2666MHz. Configuration – Intel® Optane™ SSD DC P4800X 375GB and Intel® SSD DC P4600 1.6TB. Latency – Average read latency measured at QD1 during 4K Random Write operations using FIO 3.1. Intel Microcode: 0x2000043; System BIOS: 00.01.0013; ME Firmware: 04.00.04.294; BMC Firmware: 1.43.9176955; FRUSDR: 1.43. SSDs tested were commercially available at time of test. Performance results are based on testing as of July 24, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

*Other names and brands may be claimed as the property of others.
Software Stack

Intel® Optane™ SSD

Intel® Optane™ PMEM

No Page Cache
Android* IO Stack

- **DBMS (SQLite)**
- **File System**
- **I/O Daemons**
- **I/O Scheduler**

EXT4 Writes
- 50% of writes are for EXT4 Journal* updating
- 60-80% of the writes are random†

4KB IO
- More than 50% of the writes are synchronous
- 4KB IO accounts for 70% of all writes

Impact
- Most of the IO operations uses SQLite* and EXT4 combined
- This generate excessive write operations to the NAND-based storage
- Degrade IO performance & Reduces life time

†Excluding Metadata and Journal accesses

System configuration: Tested September, 26, 2018
Android* Version : 8.0 Oreo
*Other names and brands may be claimed as the property of others
Switching to an Intel® Optane™ Memory M10 showed 70% improvement in Read and 50% in Write on QD4

See slides 19-20 for footnotes and configurations.

*Other names and brands may be claimed as the property of others. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Performance results are based on testing as of September 26, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure.

Android Version : 8.0 Oreo
FIO Performance Analysis

- Switching to an Intel® Optane™ Memory M10 shown at par performance

See slides 19-20 for footnotes and configurations.

*Other names and brands may be claimed as the property of others.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Performance results are based on testing as of September 26, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure.

See slides 19-20 for footnotes and configurations.
Switching to an Intel® Optane™ Memory M10 shows 90% Improvement. App Launch time ~30% Better

See slides 19-20 for footnotes and configurations.
*Other names and brands may be claimed as the property of others.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Performance results are based on testing as of September 26, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure. System configuration: Tested September, 26, 2018 Source – Intel: Model Specification: https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc7i7bnh.html DDR: 4 GB, Kingston, 2133 MHz (SODIMM, DDR4). Comparison done with Third party at par spec. PCIe* 3.0 x2 NVMe drives. https://ark.intel.com/content/www/us/en/ark/products/135531/intel-optane-memory-m10-series-64gb-m-2-80mm-pcie-3-0-20nm-3d-xpoint.html Android Version : 8.0 Oreo
Boot time Analysis

- Switching to an Intel® Optane™ Memory M10 shows 20% better performance

See slides 19-20 for footnotes and configurations.
*Other names and brands may be claimed as the property of others.
Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Performance results are based on testing as of September 26, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product or component can be absolutely secure. System configuration: Tested September, 26, 2018 Source – Intel: Model Specification: https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc7i7bnh.html

DDR: 4 GB, Kingston, 2133 MHz (SODIMM, DDR4). Comparison done with Third party at par spec. PCIe* 3.0 x2 NVMe drives.
Shrout Research Data

*Other names and brands may be claimed as the property of others. Intel does not control or audit third-party data. You should review this content, consult other sources, and confirm whether referenced data are accurate.

This paper was commissioned by Intel https://static1.squarespace.com/static/57fdb580ff7c50274b138ef7/59f24b308e7b0f2fb05e73f3/1509051187047/IntelOptaneSSD900p_Performance_Testing_Methodology_v10.pdf
Conclusions & Recommendations

- Intel® Optane™ technology is best suited for Data base workloads
- Android applications uses SQLite.
- Intel® Optane™ Memory Media & Intel Optane technology can provide higher performance in low power segments as well.
- All Android* Storage overheads improved with Intel® Optane™ technology

*Other names and brands may be claimed as the property of others.
Conclusions & Recommendations

Intel® Optane™ Memory Media Enables Future Applications

- Massive in-memory database
- Fast system recovery
- Low latency
- High endurance

End User Possibilities:
- Gaming
- High fidelity pattern recognition
- Genomics
Appendix 1

Intel is Leading the Way with NVM Technology (Slide 4)

3. **1st 128GB with 1st integrated Hi-K Metal Gate Stack** - https://www.pcmag.com/article2/0,2817,2397287,00.asp
6. **1st to 64 layer TLC** - http://www.storagereview.com/intel_shows_off_new_tech_ships_1st_64layer_3d_nand_for_data_center
Storage Workload used

FIO* Performance Analysis (Slide 11 & 12)

<table>
<thead>
<tr>
<th>Drive Prepare</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>fio --ioengine=mmap --direct=1 --buffered=0 --size=100% --randrepeat=0 --fill_device=1 --norandommap --allow_mounted_write=1 --refill_buffers --log_avg_msec=1000 --group_reporting --filename=/dev/block/nvme0n1 sleep 1 fio --name=seq_write --rw=write --bs=128k --size=1024m --iodepth=128 --ioengine=mmap --numjobs=1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random Read</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>sync & echo 3 > /proc/sys/vm/drop_caches & fio --name=rand_read --rw=randread --size=256m --bs=4k --iodepth=8 --ioengine=mmap --directory=/data/local/tmp --numjobs=1/2/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random Write</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>sync & echo 3 > /proc/sys/vm/drop_caches & fio --name=rand_write --rw=randwrite --size=256m --bs=4k --iodepth=8 --ioengine=mmap --directory=/data/local/tmp --numjobs=1/2/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequential Read</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>sync & echo 3 > /proc/sys/vm/drop_caches & fio --name=seq_read --rw=read --size=1024m --bs=128k --iodepth=128 --ioengine=mmap --directory=/data/local/tmp --numjobs=1/2/4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequential Write</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>sync & echo 3 > /proc/sys/vm/drop_caches & fio --name=seq_write --rw=write --size=1024m --bs=128k --iodepth=128 --ioengine=mmap --directory=/data/local/tmp --numjobs=1/2/4</td>
<td></td>
</tr>
</tbody>
</table>

*Other names and brands may be claimed as the property of others.

DDR: 4 GB, Kingston, 2133 MHz (SODIMM, DDR4)

Android Version: 8.0 Oreo
Analysis Environment

Performance Analysis (Slide 11 - 14)

System Configuration

<table>
<thead>
<tr>
<th>Board</th>
<th>KBL-NUC NUC7i7BNH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>Optane Memory M10 Series (64GB, M.2 80mm PCIe 3.0, 20nm) - MEMPEK1J064GAES*</td>
</tr>
<tr>
<td></td>
<td>Intel e6000p 256GB SSD, NVMe*, 1570/540 (Seq/Rand)</td>
</tr>
<tr>
<td>RAM</td>
<td>4 GB, Kingston*, 2133 MHz (SODIMM, DDR4)</td>
</tr>
<tr>
<td>OS</td>
<td>Android* 8.0 (Oreo)</td>
</tr>
</tbody>
</table>

*Other names and brands may be claimed as the property of others.

Useful Resources

For information on how best to benchmark Intel® Optane™ SSDs, please refer to the Evaluation Guide

Open source Android Software Stack on Intel Architecture

https://01.org/projectceladon/

*Other names and brands may be claimed as the property of others.
THANK YOU