[image: image7.wmf]R

McKinley Power Pod Design Guidelines, Rev. 0.0
[image: image8.wmf]R

<Shortened Document Title, Rev#>5

SSI Switch Management Specification
September 2009
Revision 1.0.0
Important Information and Disclaimers:

1. THE SERVER SYSTEM INFRASTRUCTURE PROMOTERS (“SSI PROMOTERS”) MAKE NO WARRANTIES WITH REGARD TOTHIS SSI SPECIFICATION (“SPECIFICATION”), AND IN PARTICULAR DOES NOT WARRANT OR REPRESENT THAT THIS SPECIFICATION OR ANY PRODUCTS MADE IN CONFORMANCE WITH IT WILL WORK IN THE INTENDED MANNER. NOR WILL SSI PROMOTERS ASSUME ANY RESPONSIBILITY FOR ANY ERRORS THAT THE SPECIFICATION MAY CONTAIN OR HAVE ANY LIABILITIES OR OBLIGATIONS FOR DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR CONSEQUENTIAL DAMAGES WHETHER ARISING FROM OR IN CONNECTION WITH THE USE OF THIS SPECIFICATION IN ANY WAY.

2. NO REPRESENTATIONS OR WARRANTIES ARE MADE THAT ANY PRODUCT BASED INWHOLE OR PART ON THE ABOVE SPECIFICATION WILL BE FREE FROM DEFECTS OR SAFE FOR USE FOR ITS INTENDED PURPOSE. ANY PERSON MAKING, USING OR SELLING SUCH PRODUCT DOES SO AT HIS OR HER OWN RISK.

3. THE USER OF THIS SPECIFICATION HEREBY EXPRESSLY ACKNOWLEDGES THAT THE SPECIFICATION IS PROVIDED AS IS, AND THAT THE SSI PROMOTERS MAKE NO REPRESENTATIONS, EXTENDS NO WARRANTIES OF ANY KIND EITHER EXPRESS OR IMPLIED ORAL OR WRITTEN, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTY OR REPRESENTATION THAT THE SPECIFICATION OR ANY PRODUCT OR TECHNOLOGY UTILIZING THE SPECIFICATION OR ANY SUBSET OF THE SPECIFICATION WILL BE FREE FROM ANY CLAIMS OF INFRINGEMENT OF INTELLECTUAL PROPERTY, INCLUDING PATENTS, COPYRIGHTS AND TRADE SECRETS NOR DO THE SSI PROMOTERS ASSUME ANY OTHER RESPONSIBILITIES WHATSOEVER WITH RESPECT TO THE SPECIFICATION OR SUCH PRODUCTS.

4. A NON-EXCLUSIVE COPYRIGHT LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION FOR ANY PURPOSE PROVIDED THIS “IMPORTANT INFORMATION AND DISCLAIMERS SECTION (PARAGRAPHS 1-6) IS PROVIDED IN WHOLE.

5. UPON REQUEST FROM AN ADOPTER, THE SSI PROMOTERS WILL GRANT A NON-EXCLUSIVE, WORLD-WIDE LICENSE UNDER ANY NECESSARY CLAIMS, DEFINED IN THE ADOPTERS AGREEMENT, TO MAKE, HAVE MADE, USE, IMPORT, SELL, OFFER TO SELL, AND OTHERWISE DISTRIBUTE AND DISPOSE OF COMPLIANT PORTIONS, DEFINED IN THE ADOPTERS AGREEMENT, PROVIDED THAT SUCH LICENSE NEED NOT EXTEND TO ANY PART OR FUNCTION OF A PRODUCT IN WHICH A COMPLIANT PORTION IS INCORPORATED THAT IS NOT ITSELF PART OF THE COMPLIANT PORTION. SUCH LICENSE WILL BE GRANTED ON REASONABLE AND NONDISCRIMINATORY (“RAND”) TERMS AND MAY BE CONDITIONED UPON ADOPTER’S GRANT OF A RECIPROCAL LICENSE TO THE SSI PROMOTERS.

6. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED.

Revision 1.0.0
Contents

11
Introduction

1.1
Reference Documents
1
1.2
Terms and Abbreviations
2
2
Switch Management Architecture
4
2.1
Switch Types
6
2.2
Redundant Switches
6
2.3
Patch Module Support
7
3
Switch Module Management Features
8
3.1
Management Interfaces
8
3.2
Switch Module I2C Interface
9
3.2.1
I2C Addressing
9
3.2.2
Control and Status Registers
10
3.2.3
Status Register Event Handling
14
3.2.4
VPD Device
14
3.2.5
VPD Format
14
3.3
Management Ethernet
15
3.4
Power Management
15
3.5
Hot Swap Management
15
3.5.1
Relationship to Module Operational State
15
3.6
Firmware Update
16
4
Chassis Requirements
17
4.1
Chassis Manager Redundancy
17
4.2
Slot ID and I2C Addresses
17
4.3
Chassis Inventory Information
18
5
Chassis Manager Requirements
19
5.1
Switch Module Discovery
19
5.2
Switch Module Firmware Update
19
5.3
Management VLAN
19
5.4
Switch Management Network Requirements
21
5.4.1
Bridging
22
5.4.2
Iptables port forwarding
23
5.4.3
Iptables IP forwarding
23
5.4.4
Proxy Arp
24
5.5
Switch Management Operation
24
5.5.1
Compatibility Determination
24
5.5.2
Interconnect Compatibility
25
5.5.3
Insertion Log Management
25
5.5.4
Switch Activation
25
5.5.5
Switch Operation – Steady State
26
5.5.6
End User Controls
27

Figures

4Figure 2‑1: Example Chassis Internal Management Connectivity

Figure 2‑2: Ethernet Management Traffic Flow
5
Figure 3‑1: Switch Module Management Interfaces
8
Figure 5‑1: Management VLAN Topology
20
Figure 5‑2: Linux VLAN Limit Workaround
21
Figure 5‑3: Switch Management Ethernet Topology
22
Figure 5‑4. Bridge Linux Example
23

Tables

2Table 1‑1. Terms and Abbreviations

Table 3‑1: I2C Addresses
9
Table 3‑2: Register Offsets
10
Table 3‑3: Control Register Bits (0x00)
11
Table 3‑4: Extended Control Register Bits (0x08)
11
Table 3‑5: Status Register Bits (0x01)
12
Table 3‑6: Extended Status Register Bits (0x09)
12
Table 3‑7: POST Diagnostic Register Values (0x02)
13
Table 3‑8: Temperature Register Values (0x0A, 0x0B)
13
Table 3‑9: Relationship to M-State
16
Table 4‑1. Switch Slot ID Assignment
18
Table 5‑1. SSI-compatible VPD Values
24

Revision History

The following table lists the revision schedule based on revision number and development stage of the product.

	Revision
	Project Document State
	Date

	1.0.0
	Initial public release
	9/16/2009

Note: Not all revisions may be published.

This page intentionally left blank
1 Introduction

This document defines the requirements for management of SSI-compliant I/O switches used in SSI-compliant chassis.

Chapter 2 provides an overall view of the SSI management architecture as it relates to switches.

Chapter 3 summarizes the switch management features as defined in the Base and VPD specifications.

Chapter 4 provides requirements for SSI-compliant chassis with respect to switch management support.

Chapter 5 provides Chassis Manager (CMM) requirements relative to switches, including a description of switch management activities.

1.1 Reference Documents

· BladeServer Base Specification for Switch Module Subsystems,
version 2.41, IBM/Intel, February 2009 (Base Spec)
· BladeServer Base Specification For VPD,
version 2.41, IBM/Intel, February 2009 (VPD Spec)
· SSI Chassis Management Module Specification
version 1.0.0, September 2009 (CMM Spec)
· SSI Compute Blade Specification
version 1.0.0, September 2009 (Compute Blade Spec)

1.2 Terms and Abbreviations

Table 1‑1. Terms and Abbreviations lists terms and acronyms used in specific ways throughout this specification.

Table 1‑1. Terms and Abbreviations
	Term
	Definition

	Blade server
	A system comprised of a chassis, chassis resources (power, cooling, Chassis Manager), compute blades, and communication (switch) blades. The chassis may contain additional modules, such as storage.

	BMC
	See Management Controller

	chassis
	The mechanical enclosure that consists of the mid-plane, front boards, cooling devices, power supplies, etc. The chassis provides the interface to boards and consists of the guide rails, alignment, handle interface, face plate mounting hardware, and mid-plane interface.

	chassis ground
	A safety ground and earth return that is connected to the chassis metal and available to all PBAs.

	Chassis Management Module (CMM)
	Dedicated intelligent chassis module that hosts the Chassis Manager functionality.

	Chassis Manager (CM)
	Set of logical functions for hardware management of the chassis. This may be implemented by one or more dedicated Chassis Management Modules or by one or more blade management controllers and/or payload processors.

	cold start
	Cold start is the time when blades receive the payload power for the first time.

	Intelligent Platform Management Bus (IPMB)
	IPMB is an I2C-based bus that provides a standardized interconnection between managed modules within a chassis. ftp://download.intel.com/design/servers/ipmi/ipmb1010ltd.pdf

	Intelligent Platform Management Interface (IPMI)
	IPMI v2.0 R1.0 specification defines a standardized, abstracted interface to the platform management subsystem of a computer system. ftp://download.intel.com/design/servers/ipmi/IPMIv2_0rev1_0.pdf

	interconnect channel
	An interconnect channel is comprised of two pairs of differential signals. One pair of differential signals for transmit and another pair of differential signals for receive.

	Link
	Network link representing either a single channel or aggregation of channels (example: KX4 using 4 channels would be a single Link). The term “Link” does not represent virtualized aggregation such as “teaming”.

	managed module
	Any component of the system that is addressable for management purposes via the specified management interconnect and protocol. A managed module is interfaced directly to the chassis BMI.

	Management Controller
	An intelligent embedded microcontroller that provides management functionality for a blade or other chassis module.

	may
	Indicates flexibility of choice with no implied preference.

	mezzanine
	The mezzanine is a PBA that installs on a blade PBA horizontally. It provides additional functionality on the blade PBA and provides electrical interface between the blade PBA and the mid-plane PBA. Both the blade PBA and mezzanine PBA are contained inside the blade module.

	mid-plane
	Equivalent to a system backplane. This is a PBA that provides the common electrical interface for each blade in the chassis and on both the front and back of the PBA.

	module
	A physically separate chassis component that may be independently replaceable (e.g., a blade or cooling module) or attached to some other component (e.g., a mezzanine board).

	Compute Blade
	A blade that conforms to the requirements defined by the SSI standard set of specifications.

	out-of-band (OOB)
	Communication between blades that does not need the host or payload to be powered on

	payload
	The hardware on a blade that implements the main mission function of the blade. On a compute blade, this includes the main processors, memory, and I/O interfaces. The payload is powered separately from the blade management subsystem. Payload power is controlled by the blade management controller.

	Primary Switch
	A switch that services the 2 base level Ethernet interfaces on the Compute Blade. These interfaces are also connected to the compute blade BMCs. There are generally 2 Primary Switches in an SSI System. These are described as the 1st and 2nd Primary Switches.

	shall
	Indicates a mandatory requirement. Designers must implement such mandatory requirements to ensure interchangeability and to claim conformance with this specification. The use of shall not indicates an action or implementation that is prohibited.

	should
	Indicates flexibility of choice with a strongly preferred implementation. The use of should not indicates flexibility of choice with a strong preference that the choice or implementation be avoided.

	slot
	A slot defines the position of one blade in a chassis

2 Switch Management Architecture

Figure 2‑1 shows the management connectivity between the Chassis Manager and the Primary chassis switch modules in a redundant switch and Chassis Manager implementation. Equivalent connections exist between the Chassis Manager and the Secondary switch modules. Each Chassis Manager has independent point-to-point I2C and Ethernet management connections to each switch module in the chassis. In addition, each switch slot provides a presence signal that the Chassis Manager monitors to determine presence and to handle insertion/removal transition sequences.

The I2C connections are for switch discovery, power management, and hardware (power and cooling) failure detection. Management Ethernet connections are for access to the management port of the switch module and to the management VLAN used to access each blade's Baseboard Management Controller (BMC).

Switches only support management connectivity to one Chassis Manager at a time based on the state of the MM Select lines. The MM Select states are negotiated between the Chassis Managers.

Figure 2‑1: Example Chassis Internal Management Connectivity

[image: image1]
Figure 2‑2 shows Ethernet management traffic flow in an SSI chassis, showing just a single Primary switch implementation and no Secondary switches. A Secondary switch technology may or may not be Ethernet, and so the management traffic flow would only be between the Chassis Manager and the Primary switch modules.

Figure 2‑2: Ethernet Management Traffic Flow

[image: image2]
The SSI architecture supports the following switch management features:

· Discovery
Switch presence is directly detectable, and once a switch has been detected, its type and chassis compatibility can be determined.
· Inventory / Compatibility

SSI supports determining a switch module’s product information and identity (via its VPD Data). This allows it to determine whether a switch module is SSI-compliant and whether it is appropriate for the slot it is in.
· Power Management

Switch modules implement switch payload power control and provide power use information. This Chassis Manager uses this information to control switch state and determine overall chassis power budget.
· Configuration
Switch modules provide configuration support via their management Ethernet interfaces. The Chassis Manager exposes the interfaces to allow end-users to use switch vendor configuration and management applications to configure the chassis switches.
· Hot Swap Management

The Chassis Manager uses the switch modules’ payload power control to allow switches to be placed in a state compatible with extraction. Switches may also be inserted into a “live” chassis and activated for use.
· Failure Detection

A switch module’s I2C interfaces provide information on both the power and thermal state of the switch. The Chassis Manager uses this state to affect the chassis cooling system behavior as well as to alert administrators of overall switch health.
2.1 Switch Types

SSI Switches are distinguished by switch type and switch technology. There are two switch types:

· 1X Switch (LSSM)
· 4X Switch (HSSM)

The switch type defines the mechanical dimensions and electrical interface for that switch.

Each of these switch types may be implemented in different technologies – Ethernet, Fibre Channel,* Infiniband Architecture,* etc.
2.2 Redundant Switches

Although not required, an SSI Chassis may support redundant Primary and/or Secondary switch modules. SSI switch modules themselves have no specific redundancy support.

A chassis supports switch module redundancy by routing switch links from each switch module in a redundant pair to each Compute Blade.

Compute Blade software has to be explicitly aware of the switch module redundancy and participates in the redundancy support by implementing redundant link teaming or some other link bonding or failover mechanism.

Similarly, the external switches, routers, or other subsystem that a chassis’ switches connect to must be explicitly aware of the redundant nature of the switch modules. They must route traffic appropriately, rerouting links when communications fail.

The Chassis Manager has no knowledge of whether switches are configured redundantly; it can not distinguish, from a system perspective, between critical and non-recoverable switch failures. For example if one of a pair of redundant switches fails, the system is operating in a degraded state as opposed to a failed state, but the Chassis Manager can not detect or report that. The Chassis Manager will only report the individual switch failure.
2.3 Patch Module Support

The Base Specification for Vital Product Data (VPD) defines Copper Passthru and Optical Passthru module type IDs. Such passthru modules shall only be supported in Non-Primary Fabric (non-management) Switch Modules. The Primary Fabric switch module(s) that pass management traffic must be configurable by the CMM to properly isolate the VLAN-quarantined management traffic.

3 Switch Module Management Features

This chapter provides a summary of SSI switch module management features to provide context for the following chapters. For switch module details and requirements please see the Base Specification for Switch Module Subsystems and the Base Specification for Vital Product Data (VPD).
3.1 Management Interfaces

Each Switch module implements a management subsystem that provides the following:
· I2C-based management interface for discovery, power control, and initialization purposes.
· Ethernet interface for higher-level management functions, such as error reporting, configuration, and firmware update.

In addition, each switch module implements two sets of mutually exclusive access ports to the I2C and management Ethernet interfaces: the ‘A’ set and the ‘B’ set. The active set is determined by the state of the MM_Select_X signals. In chassis that implement redundant Chassis Manager support, each set is connected to a separate Chassis Manager instance. In a single Chassis Manager chassis, only the ‘A’ set is connected to the Chassis Manager and the MM_Select_X signals have fixed values.

Figure 3‑1 shows the switch management connections for a single Chassis Manager implementation.
Figure 3‑1: Switch Module Management Interfaces

[image: image3]
3.2 Switch Module I2C Interface
Every switch module implements an I2C interface that provides power control, environmental and diagnostic status, and inventory/product information. The interface is implemented by a combination of simple register interface for control and status and a storage device (SEEPROM). These devices are always powered.

The I2C signals supported by a switch include a clock (SCL), data (SDA), and interrupt signal.

3.2.1 I2C Addressing
Table 3‑1 represents the I2C addressing for the VPD and registers on the switch. The Base 7b Address represents the Base 7-bit address, and the last bit is the R/W bit. The resultant "byte" addresses are in their respective Read/Write columns below.
Table 3‑1: I2C Addresses

	Bay
No
	ID
Pin

	VPD

	Registers

	
	
	Base 7b Addr

	Read
	Write
	Base 7b Address
	Read
	Write

	1X Switch Modules (LSSM)

	1
	001
	0x51
	0xA3
	0xA2
	0x59
	0xB3
	0xB2

	2
	010
	0x52
	0xA5
	0xA4
	0x5A
	0xB5
	0xB4

	3
	100
	0x53
	0xA9
	0xA8
	0x5B
	0xB9
	0xB8

	4
	111
	0x54
	0xAF
	0xAE
	0x5C
	0xBF
	0xBE

	4X Switch Modules (HSSM)

	7
	000
	0x50
	0xA1
	0xA0
	0x58
	0xB1
	0xB0

	8
	010
	0x50
	0xA1
	0xA0
	0x58
	0xB1
	0xB0

	9
	001
	0x50
	0xA1
	0xA0
	0x58
	0xB1
	0xB0

	10
	011
	0x50
	0xA1
	0xA0
	0x58
	0xB1
	0xB0

Notice how bay 7-10 (HSSM slots) all have the same address, and how, sequence-wise, the addresses are lower than bay 1 (effectively "bay 0"). This scheme directly implies that each HSSM must be on a separate bus. However, since these addresses do not conflict with bays 1-4, Each HSSM can share a bus with any number of LSSMs.
3.2.2 Control and Status Registers
The control device implements two control registers, two status registers, a diagnostic register, and two module-temperature-related registers.

The control registers provide for switch module payload power control and simple interactions with the switch module management controller. These registers are Read/Write by the Chassis Manager and Read Only by the switch.
The status registers, diagnostic registers, and temperature registers are all written by the switch and read by the Chassis Manager

The address tables below are provided to give a concise register reference. See the Base Spec (Section 7.4) for details on register usage.

The Registers below are accessed by passing an offset after the address byte in the I2C transaction. For write operations, the byte following the offset will be written.
Table 3‑2: Register Offsets
	Register
	Offset
	Chassis Mgr
	Switch

	Control
	0 - 0x00
	R/W
	R

	Status
	1 - 0x01
	R
	R/W

	POST Diagnostic
	2 - 0x02
	R
	R/W

	Extended Control
	8 - 0x08
	R/W
	R

	Extended Status
	9 - 0x09
	R
	R/W

	Temperature 1
	10 - 0x0A
	R
	R/W

	Temperature 2
	11 - 0x0B
	R
	R/W

Table 3‑3: Control Register Bits (0x00)
	Bit
	Usage

	0
	1 = Power on switch

	1
	0->1 transition resets MM ETH port 0

	2
	0->1 transition resets MM ETH port 1

	3
	0 = SM managed only from MM port

1 = SM managed from MM, internal & external ports

	4
	1 = Enable external SM ports

	5
	1 = Bypass extended memory diagnostics

	6
	1 = Revert to default factory values

	7
	Value for status bit 7

Table 3‑4: Extended Control Register Bits (0x08)
	Bit
	Usage

	0:1
	00 = Standard diagnostics

01 = Extended diagnostics (< 5 minutes)

10 = Full diagnostics (< 12 minutes)

11 = Reserved

	2
	1 = SM read IP configuration from VPD

	3:7
	Reserved

Table 3‑5: Status Register Bits (0x01)
	Bit
	Usage

	0
	1 = Temperature exceeds 1st thermal threshold

	1
	1 = Temperature exceeds 2nd thermal threshold

	2
	1 = IP configuration updated

	3
	1 = Operational fault

	4
	1 = Voltage fault

	5
	Reserved

	6
	1 = Initialization / diagnostics complete

	7
	Value from control bit 7

Table 3‑6: Extended Status Register Bits (0x09)
	Bit
	Usage

	0
	1 = Power on (Power Domain 2 Status)

	1
	1 = Fuse fault

	2:7
	Reserved

Table 3‑7: POST Diagnostic Register Values (0x02)
	Value
	Usage

	0x00 – 0x7F
	Base Internal Functions, Critical

	0x80 – 0x9F
	Internal I/F Failure, Non-Critical

	0xA0 – 0xAF
	External I/F Failure, Non-Critical

	0xB0 – 0xFE
	Reserved, Non-Critical

	0xFF
	Switch “Good”, Operational

Table 3‑8: Temperature Register Values (0x0A, 0x0B)
	Value
	Usage

	0x00 – 0x7D
	Temperature 0 (125 degrees C

	0x7E
	Temperature > 125 C

	0x7F
	Reserved

	0x80
	Sensor Busy – retry

	0x81
	Permanent sensor error

	0x82
	Temporary sensor error – retry

	0x83
	In POST

	0x84 – 0xF5
	Reserved

	0xF6
	Temperature < -9 C

	0xF7 – 0xFF
	Temperature -1 (-9 C

3.2.3 Status Register Event Handling

When status register events requiring Chassis Manager attention occur, the interrupt line will be asserted to inform the Chassis Manager to read the status registers. This should help to allow for longer poll frequency of the status registers, since the interrupt can be used between poll cycles. When the Chassis Manager reads the status register, the interrupt is cleared.
When such events are asserted, the Chassis Manager shall log such events and respond to them as required in the Base Specification for Switch Module Subsystems. Examples include the following:

· Increase fan speed on thermal alerts.
· Power down PD2 of the switch when voltage or fuse faults occur.
· Thermal conditions cannot be remedied.
3.2.4 VPD Device

The switch module VPD device is defined as being a minimally 64Kb (8KB) SEEPROM with an access protocol compatible with devices such as the Atmel* AT24C64 or ST Micro* M24C64. See the Base Specification for Vital Product Data (VPD) for all programming requirements
3.2.5 VPD Format

The switch module VPD is divided into multiple blocks, where each block represents information of different sub-components or aspects of the switch module.

· Block 0
represents information on overall switch module product and hardware implementation, including identity (UUID) and power utilization. It also provides pointers to the other blocks.

· Block 1

provides information on the switch payload, including port technologies and speeds. It includes information such as the payload firmware version, supported management protocols/interfaces, and management IP address.
· Block 2
is used primarily as a mailbox for the Chassis Manager to communicate with the switch payload, indicating Chassis Manager compliance to the Base Specification for Switch Module Subsystems, an insertion history log, and the requested switch module management IP address and acquisition method.
The Base Specification for Vital Product Data (VPD) defines the detailed layout of information in the VPD device.

3.3 Management Ethernet

Switch modules implement two 100Mb management Ethernet interface, which can only be accessed by the active Chassis Manager, as indicated by the MM_Select signals. As stated in the Base Specification for Switch Module Subsystems, a switch module is required to implement the following management protocols/interfaces over the management Ethernet.

· SNMP, v1 and v3

MIB-II (RFC1213) is required for monitoring purposes, and a minimum set of required SNMP traps are defined for detecting startup and link state changes.

· SSHv2

This provides a scriptable command line interface for initialization, configuration, diagnostics, and status reporting.

· Web Interface (HTTP/HTTPS)
A basic set of features and functions are defined for access via this interface.

· FTP and/or TFTP

These protocols provide support for firmware upgrade and switch configuration capture and restore (get/put).
3.4 Power Management

Switch Modules implement switch payload power control via their I2C interface. On insertion, or when management power is applied, switch payload power is off and must be explicitly enabled by the Chassis Manager. The Switch Module VPD includes information on the power budget required by the module.

3.5 Hot Swap Management
A Switch Module must support hot-swapping (insertion and removal while power is on). Upon insertion, the Chassis Manager must communicate with the switch to initiate the proper power on sequence. The Chassis Manager will detect the insertion/removal events using the presence pins.
3.5.1 Relationship to Module Operational State

Switches have no implementation support for Module Operational State as defined in the SSI Compute Blade Specification. However, Module Operational State can be mapped to particular parts of the switch management process.

Table 3‑9: Relationship to M-State

	M-State
	Switch Management Activity

	M0
	Switch not installed

	M1
	Switch inserted or chassis power on

Switch inhibited from powering on

	M2
	Switch compatibility determination

	M3
	Interconnect compatibility

Power budget allocation

Management IP address assignment

Power on

Configuration validation

Control Point IP address assignment

Internal Port enabling

External Port enabling

	M4
	Operational

	M5
	External agent requested switch shutdown

	M6
	Shutdown initiated or autonomous shutdown due to power or thermal failure

3.6 Firmware Update
Firmware Update is a required switch feature, but the implementation is provided by switch vendor specific mechanisms via the management Ethernet (within the Web and CLI Interfaces). Vendor supplied management applications provide the administrator with the means to determine whether an update is needed and the means to effect the update. Although the exact process is not prescribed in the Base Specification for Switch Module Subsystems, the required protocol for file transfer is FTP or TFTP.
4 Chassis Requirements

An SSI chassis has switch management related requirements, including management network support, slot identity, and switch related chassis topology information.
4.1 Chassis Manager Redundancy
The chassis proper shall provide the management interconnections between the Chassis Manager and the switches via the Chassis mid-plane.

The chassis shall implement separate, independent I2C and 100Mb Ethernet connections between each chassis switch slot and each Chassis Manager slot.
A per-switch slot presence signal shall be routed to each Chassis Manager slot.
An MM_Select_A signal shall be bused to all switches and to the first Chassis Manager Module slot. If Chassis Manager redundancy is implemented, a MM_Select_B signal shall be bused to all switches and the second Chassis Manager Module slot otherwise the MM_Select_B signals to the switch connector shall be tied LOW.
4.2 Slot ID and I2C Addresses

Each switch slot shall provide a 3-bit Slot ID to the switch. This Slot ID is independent of the Slot IDs assigned to SSI Compute Blades.
The Slot ID is used by some switch types to select the I2C addresses of the switch VPD and register interfaces. Other switch types have fixed I2C addresses for these resources. All switches use the Slot ID when determining their control point IP address, and so each switch slot shall be assigned a chassis-unique Slot ID.

The slot IDs shall be assigned in the mid-plane according to Table 4‑1.
Table 4‑1. Switch Slot ID Assignment

	Switch Bay
	1X Switch Bay Pins
	4X Switch Bay Pins

	
	F18
	E18
	D18
	D24
	B24
	A24

	1
	0
	0
	1
	
	
	

	2
	0
	1
	0
	
	
	

	3
	1
	0
	0
	
	
	

	4
	1
	1
	1
	
	
	

	7
	
	
	
	0
	0
	0

	8
	
	
	
	0
	1
	0

	9
	
	
	
	0
	0
	1

	10
	
	
	
	0
	1
	1

4.3 Chassis Inventory Information

The SSI Chassis Management Module Specification defines an IDROM specification that shall be populated with the capabilities of the chassis, including what switches it can support and with what capabilities.
5 Chassis Manager Requirements

5.1 Switch Module Discovery

A Chassis Manager shall implement switch module discovery, determining switch module compatibility and power requirements. On either chassis power-up or switch module insertion, the Chassis Manager implements a switch discovery process. Switch modules are discovered early on in the chassis power-up process, as switches are central to the chassis operation.

Switch modules, like any chassis module, are first discovered by the state of the switch slot presence signal. Once a switch slot is determined to be occupied, the Chassis Manager proceeds to use the switch module I2C interface to read the switch module VPD to determine the following:

· SSI compatibility

· Chassis slot compatibility

· Port technologies

· Power draw

· Product information and switch module identity

This information is used during various parts of the switch module activation process.
5.2 Switch Module Firmware Update

A Chassis Manager implements no specific switch module firmware update support. All such updates are managed by the administrator via switch vendor supplied applications or via switch specific implemented management protocols.

5.3 Management VLAN

Ethernet switch modules used as Primary switches implement a management VLAN ID of 4095 used to communicate internally in the chassis between the Chassis Manager and Compute Blade management controllers. Both the Chassis Manager and the Compute Blade BMCs must tag the management traffic with the management VLAN ID. In Figure 5‑1 all traffic represented in blue is 4095 tagged traffic. The Compute Blade NIC must have the proper filters setup to ensure the management traffic gets to the BMC.

Figure 5‑1: Management VLAN Topology

[image: image4.emf]Switch

Mgmt VLAN

CMM

DATA BN

DATA B1

NIC

iBMC

Blade N

RMII

CPU

DATA BN

NIC

iBMC

Blade 1

RMII

CPU

DATA B1

Mgmt VLAN

DATA BN

Mgmt VLAN

DATA B1

In Linux,* sending out tagged VLAN frames is done simply by adding a virtual (802.1q) interface. This is accomplished with the "vconfig" command. Below is an example:

vconfig add eth1 4095
ifconfig eth1.4095 1.1.1.254 netmask 255.255.255.0 up

Some operating systems (including Windows® and Linux) will not be able to perform this out of the box, because VLAN 4095 is often reserved for special use (typically discarding frames). In fact, as of Linux kernel 2.6.30, the first line above will generate an error on an unmodified kernel.

Therefore, if the BMC or Chassis Manager runs Linux, a kernel modification may be required to configure the tagged VLAN interface. Figure 5‑2 is a diff reference to at least one of the changes that may need to be made to a 2.6.x Linux kernel to support VLAN 4095 (/usr/src/linux//linux/net/8021q/vlan.c). The original source is on the left; the modification is on the right. As you can see, this change effectively increments the supported VLAN ID by 1. This "hint" is only intended to be an example; it is not guaranteed to be free of side effects. Also, keep in mind any obligations that GPL may require of such modifications:

Figure 5‑2: Linux VLAN Limit Workaround

[image: image5.png]292
203
200
205
296
207
208
299
300
301
302
303
308
305
306
307
308
308
310

/e

static int

B

=/

Attach a VLAN device to & mac
Returns 0 if the device vas or

register_vian device (st

struct net_device *new_dev;

dev_net (real -
struct vian net *vn = net_gene
char name [IFNAMSIZ];

int ers;

struct net *met

return ~ERANGE;

err = vian_check real dev(real
if (err < 0)
retarn err;

292
203
200
205
296
207
208
299
300
301
302
303
308
305
306
307
308
308
310

/+ Attach 2 VIAN device to a ma
+ Returns 0 if the device vas
=/

static int register_vian device(
B
struct net_device *new_dev;
struct net *net = dev_net (ze
struct vian net *vn = net_ge
char name [IFNAMSIZ];

int ers;

return ~ERANGE;

err = vian_check_real dev(re
if (err < 0)
retarn err;

The Chassis Manager shall also support (non-primary) switches that do not use VLAN 4095 to communicate with the switch.
5.4 Switch Management Network Requirements

As stated in Section 3.3, Web, SNMP, and SSH (CLI) interfaces are required in the Base Specification for Switch Module Subsystems. These interfaces are intended to be directly exposed to the end user.

The management architecture is designed such that advanced and detailed management tasks specific to the individual switch module should be provided by the interfaces integrated into the switch module. For instance, the Base Specification for Switch Module Subsystems requires that the Web Interface includes features such as firmware update, port status, network configuration, SNMP configuration, and etc.

To support these features to the end user, the Chassis Manager must have a network configured in such a way that the internal Ethernet interface that is on the switch shall be accessible directly by the external interface of the Chassis Manager. Therefore, each interface represented by a red diamond (in Figure 5‑3) would actually be in the same (external) subnet.
Figure 5‑3: Switch Management Ethernet Topology

[image: image6.emf]Chassis Manager

Switch

Primary Ethernet Switch

text

text

Compute Blades

Other Fabric Switch

(eg; Infiniband)

LOM

IB-Mezz

Primary Ethernet Switch

CPU

LOM

BMC

CPU

Tagged

VLAN

4095

Untagged

Mixed

Tagged

and

Untagged

This access must be so transparent that even the IP range used on the switch shall be the same as the IP range on the Chassis Manager external uplink. Essentially the switch needs to appear as if it is in the same network as the external port of the Chassis Manager.
The Chassis Manager shall also support ability to connect to switch management interfaces that may or may not be 4095 VLAN tagged interfaces. Although Primary switches are required to use 4095 tagged VLANs, other switches may not use tagged interfaces. Since the CMM may only have a single connection to its integrated switch, this implies that the single interface on the CMM will need to support both 4095 tagged and untagged traffic.

In Linux, potential solutions that have been explored are iptables port forwarding, iptables IP forwarding of virtual interfaces, proxy-arp, and bridging. In the following examples, this document will explore the merits of each (with http as an example) and provide a conclusion. Each of these options were explored in a "Proof of Concept" (POC) effort to produce this document.

5.4.1 Bridging

Bridging is a network implementation that assembles the internal interfaces into a bridge with its own IP address. In this configuration, IP addresses are not assigned to individual ports on the CMM (such as eth0 and eth1), but rather to the bridge that bridges the traffic between all interfaces (just like a general Ethernet switch would). All of the problems above are solved in a bridged environment. However, a new problem is introduced. Since broadcast traffic from the outside is bridged inside, more "noise" than is desirable may appear in the internal interfaces. Additional security issues could be introduced here as well if the internal network is not protected. So, a tool like ebtables will have to be used to limit the traffic going across the bridge. Additionally, if two chassis are plugged into the same external network, IP conflicts between the internal IP addresses can arise if the proper filters are not put into place. Bridging is a recommended implementation to solve the above network issues. Figure 5‑4 shows a Linux configuration example with a system that has bridge-utils installed.

Figure 5‑4. Bridge Linux Example
create bridge
brctl addbr br0

add interface to bridge
brctl addif br0 eth0
brctl addif br0 eth1
brctl addif br0 eth1.4095

clear IP configurations from individual interfaces.
ifconfig eth0 0.0.0.0
ifconfig eth1 0.0.0.0
ifconfig eth1.4095 0.0.0.0

set external ip address of bridge
ifconfig br0 192.168.0.1 netmask 255.255.255.0

set internal ip address for communications to blades
ifconfig br0:1 1.1.1.254 netmask 255.255.255.0

add ebtables rules to isolate internal (private) network
ebtables -A INPUT -p ARP -i eth0 --arp-ip-dst 1.1.1.0/24 -j DROP
ebtables -A INPUT -p ARP -i eth0 --arp-ip-src 1.1.1.0/24 -j DROP

ebtables -A FORWARD -p ARP -o eth0 --arp-ip-dst 1.1.1.0/24 -j DROP
ebtables -A FORWARD -p ARP -o eth0 --arp-ip-src 1.1.1.0/24 -j DROP
ebtables -A FORWARD -p ARP -i eth0 --arp-ip-dst 1.1.1.0/24 -j DROP
ebtables -A FORWARD -p ARP -i eth0 --arp-ip-src 1.1.1.0/24 -j DROP

ebtables -A OUTPUT -p ARP -o eth0 --arp-ip-dst 1.1.1.0/24 -j DROP
ebtables -A OUTPUT -p ARP -o eth0 --arp-ip-src 1.1.1.0/24 -j DROP

5.4.2 Iptables port forwarding

Port forwarding is a method where the IP address of the external Ethernet port of the Chassis Manager is used to access the switch. This is done by taking an unused TCP port number and redirecting it to an internal IP address. For example, external IP:port 192.168.0.1:81 is redirected to 1.1.1.101:80 (internal IP of switch). The benefit of this approach is a single IP address is used for all management of the system.

Unfortunately, this method will begin to fail if the web server on the switch executes a "redirect" to a page that calls out :80 in the URL. Since many switches of this standard were designed around the IBM® Bladecenter® behavior (which uses external IP addressing for switches), this approach could be very risky. This is not a recommended approach.
5.4.3 Iptables IP forwarding

IP forwarding is similar to port forwarding except that the Chassis Manager sets up a virtual external interface with an IP address different from the Management IP address of the Chassis Manager. Traffic to that IP is redirected to an internal IP. A benefit of this approach is it is immune to the port number redirect as described above, however, it is not immune to a redirect to the IP that the switch thinks is the management IP. For example, if the browser is pointing to 192.168.0.101, and that IP is redirected to an internal switch IP of 1.1.1.101, then, if the web server on the switch ever does a redirect to http://1.1.1.101/test.html, the browser would not be able to reach that address. This, also, is not a recommended approach.

5.4.4 Proxy Arp

Proxy Arp is a means by which the external Ethernet interface responds to ARP requests to the IP of the internal interface. In this scenario, the internal IP address of the switch is within the same range as the external interface of the Chassis Manager. In the POC experiments, this approach seemed to remedy both of the issues raised above. The only use case it did not handle is getting an IP address via DHCP. Since DHCP is a supported use case for SSI switches, this approach is not recommended.

5.5 Switch Management Operation

This section describes the process of, and requirements for, switch module management, including discovery, activation, configuration, and monitoring.
5.5.1 Compatibility Determination
Switch module compatibility has two components. SSI compatibility and slot specific requirement compatibility. A switch module that is determined to be incompatible shall not be powered on and initialized.

5.5.1.1 SSI Compatibility

For a switch module to be SSI compatible, it shall have the following values (or greater) in all of the specified VPD fields. Any switch module without all of these values as in Table 5‑1 shall be considered incompatible.

Table 5‑1. SSI-compatible VPD Values
	Block
	VPD Field Name
	Required Value

	0
	VPD Version/Level
	VPD Version 1.07 (0105h)

	1
	BaseSpec_Maj_Min_version
	Base Spec Version 2.21 (0215h)

	2
	BaseSpec_Maj_Min_version
	Base Spec Version 2.21 (0215h)

5.5.1.2 Chassis Slot Compatibility

Chassis Primary switches are required to be Ethernet switches. If a switch module in a Chassis Primary switch slot is determined to not be an Ethernet switch, it shall be considered incompatible.

A chassis vendor may place chassis implementation dependent port technology requirements on switch slots and may consider switch modules that do not meet those requirements as incompatible.

Additionally, the IDROM information of the Chassis IDROM (identified in the SSI Chassis Management Module Specification) includes slot channel capabilities for the slot in which the switch is installed.
5.5.2 Interconnect Compatibility

Once a switch module is deemed chassis compatible, its port technologies are compared to those of the Compute Blade ports that it connects to. Compute Blade management controllers are told which of its ports should be enabled, based on switch module population and port technology.

During Chassis startup, switches are activated before Compute Blades because the switch modules may provide connectivity to required Compute Blade boot resources, such as storage. As a result, the actual interconnect compatibility activity may be deferred until the Compute Blades are activated.
5.5.3 Insertion Log Management

When a Chassis Manager sees a chassis switch slot’s population change, i.e., a switch inserted into the slot or, at chassis power-on, a switch is in the slot that was not at chassis power-off, it shall create a new entry in the switch module’s Insertion History Log in the switch module VPD (block 2, History Log and History Log Entry Pointer fields). All fields of the entry shall have valid data. The entry Inform(3:0) field shall have the value 0000b The Chassis Type – Sub Code field shall have the value 00h. This shall be done only for SSI compatible switch modules and whether they are slot or interconnect compatible or not.

5.5.4 Switch Activation

Once switch discovery and compatibility related activities are completed, the switch module activation process begins. A Chassis Manager may maintain administrative state that inhibits a switch module’s activation. If such state exists, the Chassis Manager will leave the switch module in the inactive state. This is the equivalent of a Module Operational State transition to the M1 state.

If the Chassis Manager continues to activate the switch module, this is the equivalent of a Module Operational State transition to the M3 state.

5.5.4.1 Power Budget Allocation

The Chassis Manager shall read the maximum power requirements from the switch module VPD and, if there is sufficient chassis power, shall allocate the required power to the switch module. If there is not sufficient chassis power, the switch module shall remain un-powered. This is equivalent to a Module Operational State transition to M1.
5.5.4.2 Powering On

A switch module’s default state is payload power off. The switch module’s payload must be explicitly power on. The Chassis Manager shall enable switch module payload power by setting the I2C Control register bit 0 to a 1. Note that switch module external ports shall remain disabled (I2C Control register bit 4 shall be set to 0).

During the power-on process, the switch module performs power-on self test (POST) operations. Once POST completes, it updates the I2C Status and Diagnostic registers to indicate completion and to indicate the POST results.

The Chassis Manager shall read the switch module I2C Status and Extended Status registers to determine if a power related failure has occurred or if the POST results indicate internal failure. In these cases, the switch module will be explicitly powered off (via the I2C Control register) and will remain in that state. This is equivalent to a Module Operational State transition to M1.
5.5.4.3 Management IP Configuration

In order for the Chassis Manager to communicate with the switch module controller via the switch module management Ethernet interface, an IP address has to be assigned to the switch controller. A Chassis Manager may choose to supply a static IP configuration (IP address, gateway address, and subnet mask) or require the switch controller to acquire the configuration dynamically via DHCP.

The Chassis Manager shall validate the switch module management Ethernet IP configuration by reading the DBCCIAQ and DBCCIP fields within block 1 of the switch module VPD. If the configuration is not as desired, the Chassis Manager shall configure the switch module Management IP address by writing appropriate data into the DBSMIAQ and DBSMSIP fields within block 2 of the switch VPD and setting I2C Extended Control register bit 2 as described in the Base Specification for Switch Module Subsystems specification.
5.5.4.4 Capabilities Determination

In the process of powering on and performing POST, a switch management controller updates its VPD with information on the management capabilities implemented by the switch module. The Chassis Manager shall read these and use the information to determine what features to advertise externally.

5.5.4.5 External Port Enabling
Once a switch module has been powered up successfully and appropriately configured, the Chassis Manager shall enable the switch’s external ports via the I2C Control register.

At this point, the switch module is considered to be operational and fully activated. This is equivalent to a Module Operational State transition to M4.
5.5.5 Switch Operation – Steady State

The Chassis Manager shall monitor an activated switch module for both environmentally related errors (power and cooling) and payload hardware and operation related errors as indicated by the I2C management interface.
5.5.6 End User Controls

The Chassis Manager shall provide end-user controls for the following functions within its own user interface:

1. SNMP MIB2 Interfaces support (show all ports, speed, status, and allow enable/disable function for each port)

2. Switch Power Control (On/Off/Reset)

3. Enablement of External Management Port

4. Reset to Factory Defaults

5. Reset with Diagnostics (level 0,1,2)

6. Receive, Log, and Present SNMP traps
7. Display Health, Thermal, and Power status

8. Display VPD info

9. Display IP and MAC configuration

10. Allow IP configuration

Appendix A – VPD structures sample code
#define SSI_VPD_BLOCK0_MAX_LEN 0x400

//==

// VPD related enumerations

//==

typedef enum {

 SsiVpdBlock0 = 0,

 SsiVpdBlock1,

 SsiVpdBlock2,

 SsiVpdBlock3,

 SsiVpdBlockLast

} SsiVpdBlockEnum;

typedef enum {

 IP_ACQUISITION_NA

= 0,

 IP_ACQUISITION_STATIC
= 1,

 IP_ACQUISITION_DHCP
= 2,

 IP_ACQUISITION_DHCP_STATIC
= 3,

 IP_ACQUISITION_BOOTP
= 4,

 IP_ACQUISITION_LAST

} IpAcquisitionEnum;

typedef enum {

 OEM_RECORD_UNUSED=0,

 OEM_RECORD_MACHINE_TYPE,

 OEM_RECORD_MACHINE_SERIAL_NUMBER,

 OEM_RECORD_COMPONENT_PART_NUMBER,

 OEM_RECORD_COMPONENT_SERIAL_NUMBER,

 OEM_RECORD_HW_REVISION,

 OEM_RECORD_COMPANY_NAME,

 OEM_RECORD_LAST

} OemRecordTypeEnum;

//==

// VPD related structures

//==

typedef struct {

 BYTE MacAddr[6];

} MacStruct;

typedef struct {

 BYTE IpAddr[4];

} Ip4Struct;

typedef struct {

 BYTE IPAddr[6];

} Ip6Struct;

typedef struct {

 Ip4Struct Ip; // IP Address

 Ip4Struct Netmask; // Net Mask

 Ip4Struct Gateway; // Gateway

} IpConfigStruct;

typedef struct {

 IpConfigStruct

defaultIp;

 IpConfigStruct

currentIp;

 IpAcquisitionEnum
method;

 int

index;
// There can be 4 of these in the VPD

 int

specified;

} IpConfigStatusStruct;

typedef struct {

 BYTE RecordType;
// OEM record type enum

 char Label[15];
// Record label, null terminated (NOT! a fixed length)

 char
 Content[16];
// Record content, null terminated (NOT! at a fixed location)

} OemVpdStruct;

typedef struct {

 OemRecordTypeEnum OemRecordType; // Enum version of raw record type;

 char *Label; // Pointer to Label string

 char *Value; // Pointer to Value string

} OemVpdExtractStruct;

typedef struct {

 BYTE PortIfProtocol; // Port Interface Protocol

 BYTE PortIfSpeed; // Port Interface Speed

 BYTE PortIfMedia; // Port Interface Media

 BYTE PortIfFlags; // Port Inteface Flags

} PortIfStruct;

typedef struct {

 BYTE wwnGuidAddr[8]; // WWN/GUID Address

} WwnGuidStruct;

// This had better be stored as 8 bits or we're in trouble

typedef union {

 BYTE value;

 struct {

 BYTE Res1 : 1; // Bit 0 reserved

 BYTE Rate : 2; // Bits 1,2 are the rate

 BYTE Lanes : 3; // Bits 3,4,5 are the lane count

 BYTE Res2 : 2; // Bits 6,7 are reserved

 } rateLaneBits;

} RateLaneBits;

typedef struct {

 BYTE LaneCount; // Appears to be a bit field but the spec is not clear

}RateLaneStruct;

// This had better be stored as 8 bits or we're in trouble

typedef union {

 BYTE value;

 struct {

 BYTE IfSpeed : 4;
// Bit 0-3 Interface speed

 BYTE IfProtocol : 4;
// Bit 4-7 Interface protocol

 } ifCharBits;

} IfCharBits;

typedef struct {

 BYTE CapabilityBits; // May be a bit field but spec is not clear

} CapabilityStruct;

typedef struct {

 WORD Reserved1; // Reserved

 WORD BlockLen; // Length of valid Block 1 VPD data -2

 BYTE BlockId; // Block ID

 BYTE Flag; // Flag (reserved)

} VpdHeaderStruct;

typedef struct {

 WORD CmdPort; // Assigned Cmd TCP XML port number

 WORD EventPort; // Assigned Event TCP XML port number

} MmIpStruct;

typedef struct {

 BYTE Year;

 BYTE Month;

 BYTE Day;

 BYTE WeekDay;

 BYTE Hour;

 BYTE Minute;

 BYTE Second;

} YMDWTimeStruct;

typedef struct {

 BYTE ChUuid[16]; // Ch_UUID

 BYTE SlotId; // Slot ID

 YMDWTimeStruct DateTime; // Year/Month/Day/DayOfWeek/Hour,Minute,Second

 BYTE ChassisType; // Chassis Type 3:0 0=Enterprise chassis type1,

 // 1= Telco chassis type 2

 //
 BYTE SubType; // Chassis sub type

} LogEntryStruct; // 26 bytes

typedef struct {

 BYTE Reserved1[4]; // Reserved

 BYTE CR;

 BYTE ECR;

 BYTE SR;

 BYTE ESR;

} MMCapStruct;

typedef struct {

 BYTE
 BladeWidth;
// 0-daughter, 1-single/HSSM, 2-double, 3-triple, 4-quad

 BYTE
 BladeHeight;
// 0-daughter, 3-switch module, 6-full height, 7-HSSM

 BYTE
 BladeWatts;
// Watts / 5

 BYTE
 BladeFeatures;
// 0-No WOL, 1-WOL

 BYTE
 BladeReserved;

} PhysicalCharStruct;

//==

// VPD Block 0

//==

// VPD block 0 structure. Must be "packed".

// Block 0 Fixed Block Manufacturing Data

typedef struct {

 WORD BlockLen; // Length of valid Block 0 VPD data - 2

 WORD VpdVersion; // BackLevelCompatibility.FieldsVersion

 WORD MfgBlockLen; // Length of Fixed Block Manufacturing Data block - 4

 BYTE BlockId; // Type of information present in the current data block

 BYTE Reserved1; // Presumably for alignment

 WORD VpdId; // IBM field when POS ID is not 0xFFEE otherwise 0x8000

 WORD PosIdExt; // POS ID extension. IBM 0x0000, OEM 0xFFEE

 WORD PosId; // IBM field when POS ID ext is not 0xFFEE otherwise 0x8000

 BYTE MachineType[7]; // Machine Type/Moddle in ASCII, right justified with "0" pad

 BYTE SerialNumber[7]; // Machine Serial number in ASCII, right justified with "0" pad

 BYTE AssetId[32]; // Asset ID in ASCII, right justified with "0" pad

 BYTE PartNumber[12]; // Card Part Number, in ASCII, right justified with "0" pad

 BYTE FruNumber[12]; // FRU number, in ASCII, right justified with "0" pad

 BYTE CardSerial[6]; // Card Serial number, in ASCII, right justified with "0" pad

 BYTE CardPrefix[6]; // Card Prefix Serial, in ASCII, right justified with "0" pad

 // Note: Offset at this point should be 0x0060

 BYTE MfgId[4]; // System Manufacturer ID, in ASCII, right justified with " " pad

 BYTE Reserved2; // Reserved

 BYTE HwRevision; // Hardware Revision Level, OEM set to 0

 PhysicalCharStruct PhysicalChar; // Physical Characteristics

 // Note: Next 4 fields start at an odd address

 BYTE MfgDate[4];

// Manufactured Card Date Code, ASCII, WW/YY

 MacStruct BayNicMacs[8];
// Ethernet MAC addresses,

// blade or daughter card, last 4 "reserved"
 BYTE Uuid[16]; // Universal Unique ID (UUID)

 BYTE PrimFunction; // Type code, specifies blade, module or option primary function

 // Note: Offset at this point should be 0x00B0

 IfCharBits InternalIfChar[16];
// Static Component internal interface characteristics.

// High nibble = I/F protocol, low nibble = I/F speed
 IfCharBits ExternalIfChar[8];
// Static Component external interface characteristics.

//Same format as Internal

 WORD Block1Offset; // Block 1 base offset - 0x0400

 WORD Block2Offset; // Block 2 base offset - 0x0800

 WORD Block3Offset; // Block 3 base offset - 0x0C00 - block is "reserved"

 WORD Block4Offset; // Block 4 base offset - 0x1000

 WORD Block5Offset; // Block 5 base offset - 0x1400

 WORD Block6Offset; // Block 6 base offset - 0x1800 - block is "reserved"

 WORD Block7Offset; // Block 7 base offset - 0x1C00 - block is "reserved"

 BYTE Reserved3; // Reserved

 BYTE TypeSubCode; // Type Sub-Code

 DWORD EnterpriseNum; // IANA Enterprise Number - used in conjunction with Product ID.

 //Independent of POSID Extension
 WORD ProductId; // Product ID - used in conjunction with IANA Number to identify

 // a particular type and is intended to replace VPDID and POSID

 BYTE Reserved4[18]; // Reserved

 // Note: Offset at this point should be 0x00F0
 WORD MaxPowerConsumption;// Maximum power consumption, in 1 watt increments

 WORD MaxShortTermOutput; // Maximum short term output, in 1 watt increments

 BYTE Reserved5[12]; // Reserved

 // Note: Offset at this point should be 0x0100

 DWORD SubSysMfgId; // SubSystem Mfg ID, in ASCII, right justified with " " pad

 BYTE CleiLanguage[10]; // CLEI - Common Language Equipment Identification.

 // All blanks means CLEI not assigned.
 BYTE Reserved6[370]; // Reserved - should be " "

 // Note: Offset at this point should be 0x0280

 OemVpdStruct OemVpd[6];

// OEM BASE VPD. Should be " " when not used.

 OemVpdStruct OemVpdExt[4];
// OEM Extended VPD. Should be " " when not used.

 BYTE Reserved7[64];
// Reserved - should be " "

} SwitchVpdBlock0Struct;

//==

// VPD Block 1

//==

// VPD block 1 structure. Must be "packed".

// Block 1 - Dynamic Block Controller Area

typedef struct {

 VpdHeaderStruct Header; // Block len, Id, Flag

 BYTE CodeVersion1[36]; // Code Level 1 Version - Lowest resident operational software.

 // ASCII, blanks if N/A

 BYTE CodeVersion2[36]; // Code Level 2 Version

 // Next level resident operational software. ASCII, blanks if N/A

 BYTE CodeVersion3[36]; // Code Level 3 Version

 // Next level resident operational software. ASCII, blanks if N/A

 BYTE CodeVersion4[36]; // Code Level 4 Version

 // Next level resident operational software. ASCII, blanks if N/A

 BYTE CodeVersion5[36]; // Code Level 5 Version

 // Next level resident operational software. ASCII, blanks if N/A

 BYTE CodeVersion6[36]; // Code Level 6 Version

 // Next level resident operational software. ASCII, blanks if N/A

 // Note: Offset at this point should be 0x00DE

 IpConfigStruct DefaultIp[4]; // Default IP Address (DBSDIP), Subnet Mask,

 //Gateway for 4 entries, hex values.

 BYTE IpAcquisition; // Current IP acquisition method (DBSCIAQ) in use by component.

 IpConfigStruct CurrentIp[4]; // Current IP Address (DBSCIP), Subnet Mask,

 //Gateway for 4 entries, hex values.

 BYTE Reserved2[115]; // Reserved - should be " "

 WORD BaseSpecVersion; // BaseSpec Major.Minor version - A 2-byte value which

 // identifies the BladeServer Base Specification level

 BYTE Reserved3[12]; // Reserved - should be " " !!! FIXME Spec says this should be 14 or 8 (depending on the version) - but the math don't work out with the offsets!

 // Note: Offset at this point should be 0x01C0

 PortIfStruct PortIfExt[16]; // Port Interface Characteristics - 16 external

 PortIfStruct PortIfInt[16]; // Port Interface Characteristics - 16 internal

 // Note: Offset at this point should be 0x0240

 WwnGuidStruct WwnGuid[4]; // This field provides the static hardware WWN and GUID info for FC HBA/IB CA located with the chassis.

 WwnGuidStruct Reserved4[4]; // Reserved

 // Note: Offset at this point should be 0x0280

 RateLaneBits RateLane[32]; // Port Data Rate and Lane Count.

 // Note: Offset at this point should be 0x02A0

 CapabilityStruct Capability[32];// Capabilities - Functions or behaviors supported by this component. Each bit or set of bits represents optional functions.

 BYTE Reserved5[16]; // Reserved - should be " "

 // Note: Offset at this point should be 0x02D0

 BYTE CapAddrExtension; // Capabilities Address Extension

 BYTE Reserved6[15]; // Reserved - should be " "

 BYTE CardSupport; // Cards Supported - This field indicates the number of daughter cards

 BYTE Reserved7[3]; // Reserved - should be " "

 DWORD SfpXfpPresence; // SFP/XFP Presence Detect - the SM reports the presence of SFP/XFPs within the SM whether permanant or hot-pluggable

 WORD DaughterFault; // Daughter Card Fault - 3 bit field reporting a faliing Daughter card

 WORD SfpXfpFault; // SFP/XFP fault - 16 bit field reporting a failing hot-pluggable SFP/XFP

 BYTE Temp2SenseLoc; // Temperature Sensor Location - Location of the 2nd Temperature sensor

 BYTE Reserved8[19]; // Reserved - should be " "

 // Note: Offset at this point should be 0x0300

 BYTE Reserved9[128]; // Reserved - should be " "

 BYTE Reserved10[128]; // Reserved - should be " "

} SwitchVpdBlock1Struct;

//==

// VPD Block 2

//==

// VPD block 2 structure. Must be "packed".

// Block 2 - Dynamic Block System Management Area

typedef struct {

 VpdHeaderStruct Header; // Block len, Id, Flag

 BYTE IpAcquisition; // Current IP acquisition method (DBSMIAQ) in use by component.

 // Note: Next 3 fields start at an odd address

 IpConfigStruct StaticIp[4]; // Static IP Address (DBSCIP), Subnet Mask, Gateway for 4 entries, hex values.

 BYTE BootPath[16]; // Boot Path - Boot path for bootable devices

 BYTE Reserved2; // Reseved

 // Note: Offset at this point should be 0x0048

 WORD BaseSpecVersion; // BaseSpec Major.Minor version - A 2-byte value which identifies the BladeServer Base Specification level

 MmIpStruct IpConfig[4]; // IPCommunication Configuration by MM - These fields are only valid when the component indicates XMl protocol support.

 BYTE Reserved3[150]; // Reserved - should be " "

 // Note: Offset at this point shuld be 0x00F0

 BYTE ProcName[16]; // Service Processor Name within component

 YMDWTimeStruct InServiceDate;// In service date, YYMMDDWWHHMMSS hex encode

 BYTE LastLogEntry; // History log entry pointer - points to must recent entry in history log

 LogEntryStruct Log[16]; // History log - Circular buffer conteining most recent 16 entries.

 BYTE Reserved4[8]; // Reserved

 // Note: Offset at this point should be 0x02B0

 MMCapStruct MmCapabilities; // MM Capabilities - Functions or behaviors supported by the MM

 BYTE Reserved5[328]; // Reserved

} SwitchVpdBlock2Struct;

//==

// VPD Blocks 3-7

//==

// VPD block 3-7 structure. Must be "packed".

// Block 3-7 - Reserved

typedef struct {

 WORD Reserved1; // Reserved

 WORD BlockLen; // Length of valid Block 2 VPD data -2

 BYTE BlockId; // Block ID

 BYTE Flag; // Flag (reserved)

 BYTE Reserved2[1018]; // Reserved;

} SwitchVpdBlock3_7Struct;

Last Page

100Mb

Management

Ethernet

Chassis�Manager

External Mgmt�Interfaces

Chassis

Interrupt

Presence

I2C

100Mb

Management

Ethernet

VPD

I2C Intf

Chassis�Manager

Chassis

Switch

Engine

Controller

Switch

External�Interfaces

Switch Core

Controller

Compute�Blade

Compute�Blade

Primary�Switch

Presence

Mgmt VLAN

Presence

MM Select B

MM Select A

100Mb

I2C

100Mb

I2C

100Mb

I2C

Blade 14

…

Blade 2

Blade 1

2nd�Primary Switch

100Mb

I2C

Chassis�Manager B

1st�Primary Switch

Chassis�Manager A

� See Section � REF _Ref240712934 \r \h ��4.2� for details on the Slot ID pins and how they relate to Bay Numbers.

� Base 7b I2C addresses for a module can also be calculated by 0x50+bay# for VPD and 0x58+bay# for control and status (HSSM slots are “bay 0”).

� As of Version 2.41 of the Base Specification for Vital Product Data (VPD), Block 1, offset 01B8h (Reserved 8 bytes) has an incorrect offset. The offset should be 01B4h. The field following (01C0h) is correct.

30
Intel Secret
Ref No SC-3111

Ref No SC-3111
Intel Secret
30

[image: image7.wmf][image: image8.wmf]_1312837355.vsd

_1314439661.vsd
text

text

Chassis Manager

Switch

Primary Ethernet Switch

Compute Blades

Other Fabric Switch  (eg; Infiniband)

LOM

IB-Mezz

Primary Ethernet Switch

CPU

LOM

BMC

CPU

Tagged VLAN 4095

Untagged

Mixed Tagged and Untagged

