FPGA Attached Persistent Memory

Accelerating Applications Cost-effectively through Coherency to meet Fast & *Predictable* Data needs

Sean In
Intel Corporation
Legal Notices and Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com.

Intel, the Intel logo, Optane, Xeon, and Agilex are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

©2019 Intel Corporation
Introduction: Towards the Fast & Predictable Data

Then: Traditional and Big Data
- NAND Flash, SSD Controller, SSD, AFA Storage Systems
- DRAM: DDRx, HBMx, LPDDRx, GDDRx

Plus...

Now: Fast Data towards Predictable Data
- Persistent Memory, FPGA (Acceleration /Computation), Coherent & non-Coherent attached Memory & Storage product solutions
Critical Inflection Point based on Unpredictability & Complexity

- Traditional Data, Big Data, and Fast & Predictable Data
- New emergence of applications, use cases, and workloads (Enterprise/Cloud WLs vs AIML WLs)
- Deterministic transactions
- Compute, Storage, vs Memory-centric
- Storage vs Memory Semantics
- Heterogeneous Architecture (CPU, GPU, FPGA, ASIC)
- Interconnects (PCIe, CXL, CCIX, OpenCAPI)
- Volatile Memory (DDR, HBM, GDDR, LPDDR, SRAM)
- NAND Flash/Storage (3D NAND, SLC/MLC/TLC/QLC, Low Latency NAND)
- Persistent Memory (Optane, PCM, MRAM, ReRAM, FRAM, etc)
- Form Factors: Components, SiP, DIMM, SSD, Embedded, EDSFF
Addressing the Needs of Fast and Predictable Data

- Ever Increasing new types of Workloads
- Classification/ Recognition -> Prediction/ Decision
- Small, Random, Read
- Memory semantics
- Acceleration of Workloads (FPGA)
- Memory Hierarchy
- New types of Memory (Persistent Memory)
- Cache Coherency (Coherent Interconnect) / Standalone PCIe Interconnect

Not just about individual ingredients but **Product as Solution** to address Fast Data Needs
Benefits of FPGA; Addressing the needs for Complex Workloads

MARKETS DEMANDING CUSTOMIZATION

EDGE
Real-Time Actionable Intelligence

NETWORK
High-Bandwidth Aggregation and Processing

DATA CENTER
Managing, Organizing, and Processing the Explosion of Data

Flexibility
FPGA functionality can change upon every power-up of the device

Acceleration
TTM & Acceleration (Compression, Dedup, Classification, Encryption, etc)

Integration
on-die processors, transceiver I/O’s, RAM blocks, DSP engines, and Different Memory hierarchies

TCO
Benefits on NRE, Design cycles, Manufacturing cycles, etc
Memory Hierarchy for FPGA; Addressing Different Usage Needs

FPGA Memory & Storage Hierarchy Building Blocks

- **On-Chip Memory**
 - Highest BW and Power Efficiency

- **In-Package Memory**
 - High Bandwidth, Density

- **On-Board**
 - Flexibility, Density, Speed, Persistency

Building Blocks
- 2D, 3D NAND Flash (Storage Block)
- DDRx
- QDR, RLDRAM
- HBMx
- eSRAM
- M20K
- MLAB
FPGA + Persistent Memory (PMEM) for Fast & Predictable Data needs

<table>
<thead>
<tr>
<th>Latency & BW Benefits</th>
<th>FPGA+ PMEM</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>Persistent Memory (i.e. Optane)</td>
<td>Memory access with persistency</td>
</tr>
<tr>
<td>Memory I/O</td>
<td>DDR I/O</td>
<td>Higher I/O pin speed</td>
</tr>
<tr>
<td>I/F</td>
<td>PCIe, Coherent I/F (i.e. CXL or others)</td>
<td>Coherent attached</td>
</tr>
<tr>
<td>Capacity</td>
<td>FlexScale (small to large capacities)</td>
<td>Capacity Scaling</td>
</tr>
<tr>
<td>FF</td>
<td>AIC + DDR DIMM slot, On-board</td>
<td>FF Flexibility</td>
</tr>
<tr>
<td>Latency</td>
<td>Low</td>
<td>Transaction commit</td>
</tr>
<tr>
<td>BW</td>
<td>High</td>
<td>Performance</td>
</tr>
</tbody>
</table>

With FPGA Acceleration!
Addressing Fast and Big Data needs through Accelerated Coherent Memory Expansion

<table>
<thead>
<tr>
<th>Coherent Memory Expansion</th>
<th>Accelerated (AFU) + Coherent Memory Expansion</th>
<th>Persistent Memory over Fabric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larger Workloads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4TB+ capacity support per Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCO Reduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consolidation of different Memory and Storage tiers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance for large data sets</td>
<td>Memory transaction vs Block access/transaction</td>
<td>Accelerate big data workloads</td>
</tr>
<tr>
<td>Enable Coherent memory expansion and leverage FPGA Memory Tiers</td>
<td>Enable in-line encryption, compression, analytics or other AFUs</td>
<td>Scalable, Shared Memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FPGA’s Memory locality access over Fabric, scalable memory pool</td>
</tr>
</tbody>
</table>
Coherent FPGA + PMEM Enables Variety of Use Cases

Different Coherent Topologies

Accelerated Coherent Memory Expansion
In-line acceleration to/from PM as coherent memory

Coherent Memory Hierarchy Expansion
FPGA as memory controller for multiple memory tiers, enabling both capacity and BW/latency.

Persistent Memory over Fabric

Host Server

Switch
Data Acceleration through minimal data movement & Memory semantics

1. Minimize Data Movement from Storage to Memory through maximizing DRAM footprint - best performance for high SLA workloads
2. Dramatically increase over memory footprint and reduce Storage footprint
3. Smart caching Option to HBM for high bandwidth
4. Acceleration Functions – compression, encryption, query acceleration, others
Intelligence Edge Metadata DB

- Big Meta DB in SSD
- Long DB loading time to DRAM
- IO BW busy

- Persistent Memory on FPGA to reduce DB loading time
- FPGA acceleration for pattern search and matching
- Improved BW and Latency
FPGA + Persistent Memory

- Unique Competitive Solution to address Big, Fast and Predictable Data needs
- Workload offload to FPGA for Acceleration
- Memory Semantics
- Low Memory latency access at high BW throughput
- Leverage on different Memory Hierarchy
- Deterministic high transaction per second
- Coherent and non-coherent Persistent Memory options (through Coherent Interconnect or PCIe)
- Cost effective & Flexible capacity and performance scale-out model
Thank you

sean.in@intel.com

Please attend other Intel sessions
&
Intel Keynote on August 7th @ 11AM