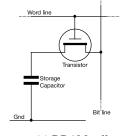


Performance characterization of a DRAM-NVM hybrid memory architecture for HPC applications using Intel Optane DC **Persistent Memory Modules** Brad Settlemyer ¹Onkar Patil, ²Latchesar Ionkov, ²Jason Lee, ¹Frank Mueller, ²Michael Lang ¹Dept. of Computer Science, North Carolina State University ²Ultrascale Research Center, Los Alamos National Laboratory

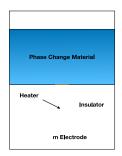
What to do about DRAM?

- DRAM scaling and reliability is an issue
 - Last 2 decades: scaled ~33% slower than core count
 - High power consumption (fast refresh and cell count)
 - Reaching density limits
- Memories with higher density than DRAM will allow different design points for exascale computers
 - Fewer nodes to reach higher aggregate memory capacities

What to do about DRAM?


- Memory technologies such as phase change memory (PCM) and spin-transfer torque RAM (STT-RAM)
 - Byte-addressable, non-volatile memory device
 - Higher density
 - Shrinks easier than DRAM
 - Higher write latency
 - Lower write durability

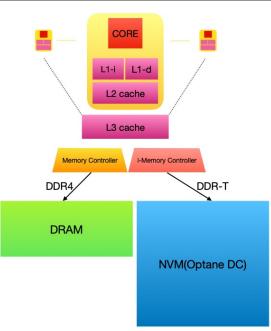
Enables scaling the main memory capacity with core count



Intel's Optane DC Persistent Memory Module

- Based on PCM
- 8x the density of DRAM
- Uses DIMM slots
- Cheaper than DRAM

(a) DRAM cell



(b) PCM cell

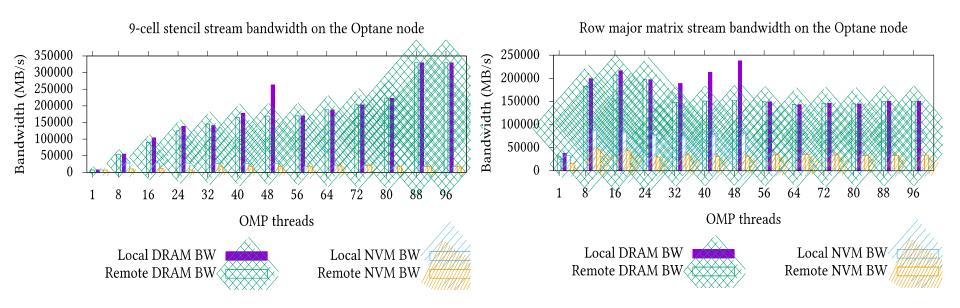
Intel's Optane DC Persistent Memory Module

- Memory interface uses DDR-T protocol via the i-Memory Controller
- Modes of operation
 - Memory mode
 - DRAM is L4 cache for Optane
 - App-direct mode
 - Optane is a block device
 - Mixed mode
 - Mem mode + App direct
 - Hybrid mode
 - Optane extends DRAM address space

Evaluation Platform

- Single node with Intel's 48-core Cascade Lake processor
- Benchmarks
 - STREAM-like custom benchmark
 - AMG multi grid
 - VPIC particle in cell
 - LULESH hydrodynamics
 - SNAP deterministic transport
- Operation Modes
 - DRAM-only
 - Memory-mode
 - Hybrid mode

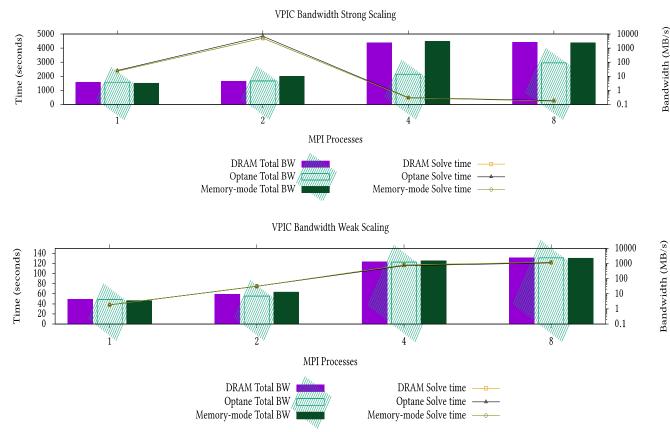
Specifications	Optane Node
Model name	Intel(R) Xeon(R) 8260L @ 2.40GHz
Architecture	x86_64
CPUs	96
Sockets	2
Cores per socket	24
NUMA nodes	4
L1d cache	32 KB
L1i cache	32 KB
L2 cache	1 MB
L3 cache	35.3 MB
Memory Controllers	4
Channels/controller	6
DIMM protocol	DDR4
DRAM size	192 GB
NVDIMM protocol	DDR-T
NVRAM size	1.5 TB
Operating System	Fedora 27


Optane DIMM Raw Performance

- Streams observed in HPC applications
 - Linear arrays and matrices
 - Different access patterns
 - Measured bandwidth
- Executed on all NUMA nodes and all CPU sets
 - Local vs Remote

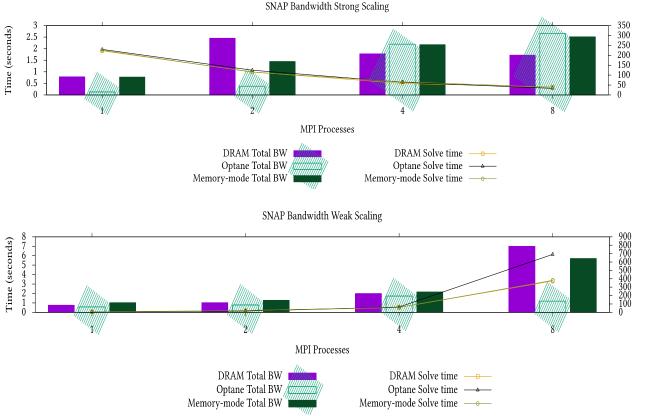
Write-only stream bandwidth on the Optane node 30000 Bandwidth (MB/s) 25000 20000 15000 10000 5000 0 32 72 80 48 56 88 8 64 16 OMP threads Local DRAM BW Local NVM BW Remote DRAM BW Remote NVM BW

More STREAMS-like Performance



Flash Memory Summit

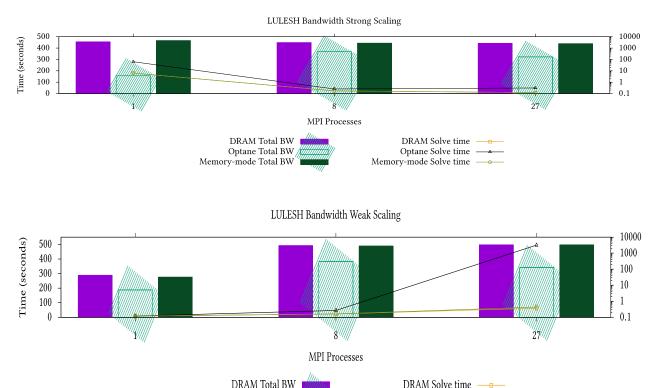
- This code is known ٠ to scale well and perform well with HT
- Optane delivers excellent performance
- **VPIC** uses CPU cache hierarchy effectively



Bandwidth (MB/s)

Performance Evaluation - SNAP

- Particle transport code
- Low overall memory bandwidth requirement
 - Note the absolute scale
- Latency dominant workload
 - Working set size issue
 - Cache/DRAM latency is
 excellent
 - Optane latency is bad



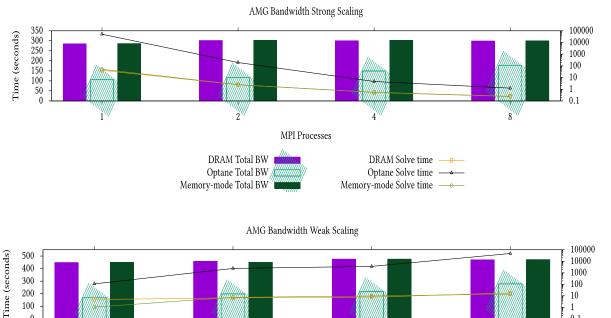
Performance Evaluation - LULESH

Optane Total BW

Memory-mode Total BW

- ALE Simulation
- Strong scaling shows problem fits in L4 cache
- Weak scaling shows what happens as the shared cache capacity is exhausted
- Mixed benefits

Optane Solve time ____


Memory-mode Solve time ——

Performance Evaluation - AMG

100 0

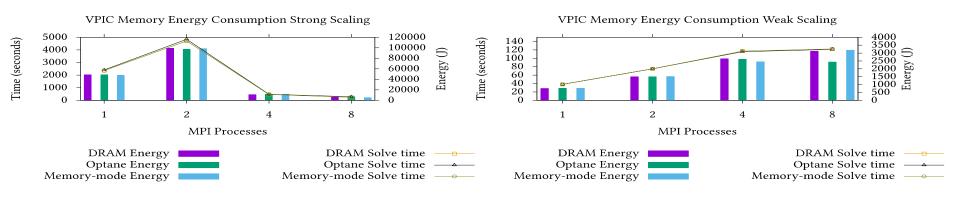
- AMG
 - Algebraic Multi-grid solver •
- L4 DRAM achieves similar bandwidth
- Code is bound on memory latency!

MPI Processes

DRAM Solve time ____

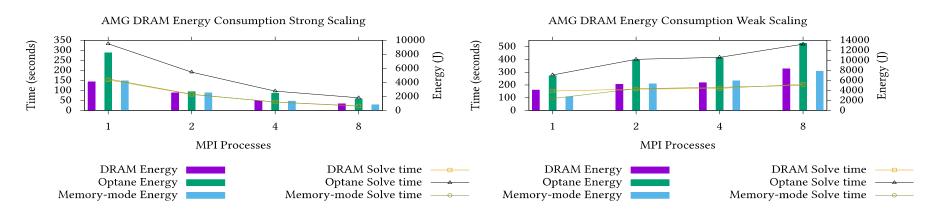
Optane Solve time ____

Memory-mode Solve time ——————


DRAM Total BW

Optane Total BW

Memory-mode Total BW


Energy Use: The Good

- Optane-only and Optane w/L4 DRAM similar performance, power
- No free lunch for cache bound codes (performance = energy)

Energy Use: The not so Good

- Optane-only is both slower and uses more energy
 - Idle power is dominating energy use
- Optane w/ I4 DRAM
 - Similar performance, similar bandwidth, similar energy use
- No free lunch for bandwidth bound codes (performance = energy)

Future Work

- Exploit capacity to reduce network/compute (memoization)
- Identify needed changes to existing cache hierarchy
- Identify strategies for leveraging Optane to fit energy budgets
- Compiler-based analysis and profiling information to optimize the use NVDIMMs for various applications
- Designing HPC platforms that use Optane efficiently
 - Trade network energy for optane capacity?

- DRAM Caching appears to just work for bandwidth?!
 - But codes that are memory latency bound still struggle!
- Slower byte-addressable memory device hampers performance of memory-bound HPC applications
 - Higher access latencies
 - Lower memory bandwidth
- Energy efficiency is complicated ...
 - You may lose performance due to excess idling
 - But maybe you can reduce network ...

Questions

- Contact Info
 - mlang@lanl.gov