Persistent Memory in 2020: Introduction

Dave Eggleston Intuitive Cognition Consulting

November 2020

Source: Intel

DRAM! (But...)

1. More cores, more channels, DDR bandwidth/core has... slowed down?!

Santa Clara, CA November 2020

Source: Micron

DRAM! (But...)

HPC System 1		HPC System 2	
Cores	56	Cores	112
Memory	112GB	Memory	1.8TB
Memory Power	50W	Memory Power	~700W!

2. More cores, more memory = Order of magnitude more Power!

Santa Clara, CA November 2020

Source: The Next Platform, Intuitive Cognition Consulting

H

DRAM! (But...)

Possible DDR5 Server Subsystem

Different types of DIMMs will be common in DDR5

3. More cores, more channels = Substantially more DDR board complexity!

Santa Clara, CA November 2020

Source: JEDEC

Can PM deliver where DRAM is falling short?

Bandwidth
Power
Complexity

. Cost/GB

And.

Plus what application(s) does PM accelerate?

PM Media Options

PM media choices have been broad, but seeing consolidation

Source: GLOBALFOUNDRIES

PM Media: Who is Doing What

- Only PCRAM has shown the characteristics necessary to deliver the PM capacity, cost, and performance.
- Memory giants are now consolidating around PCRAM.
- MRAM is a good embedded NVM for foundries – just not suitable for high capacity PM.

<u>Source</u>: Industry announcements & scuttlebutt

PM Media: Optane Series 100 to 200

	100 Series	200 Series	% Improvement		
DIMM Capacities	128/256/512 GB	+			
DDR Frequencies	2666, 2400, 2133,	2666 MT/sec			
	1866 MT/sec				
Performance shown for 256GB DIMM @ 15W (Best performing DIMM)					
Endurance 100% Writes	363 PBW	497 PBW	37%		
256B					
Endurance 100% Writes	91 PBW	125 PBW	37%		
64B					
BW 100% Read	6.8 GB/sec	8.1 GB/sec	19%		
256B					
BW 100% Read	1.75 GB/sec	2.03 GB/sec	16%		
64B					
BW 100% Write	2.3 GB/sec	3.15 GB/sec	37%		
256B					
BW 100% Write	0.58 GB/sec	0.79 GB/sec	36%		
64B					

200 series Optane focused on endurance and BW improvements

Santa Clara, CA November 2020

Source: Intel, Intuitive Cognition Consulting

PM Value Propositions: TCO, Throughput, Speed

Intel Optane PMem Delivering Real World Benefits

Santa Clara, CA November 2020

Source: Intel

DB App: PM + DRAM Outperforms DRAM alone

DRAM-like Performance

Sysbench QPS on MySQL

AI/ML App: PM acceleration

Case Study: AI / Machine Learning – Facebook's DLRM

Background

Customer Type: AL / ML Customer

Business Challenge:

Dynamic and Scalable Production Inferencing

Platform:

 Innovative Big Memory Computing platform for leveraging persistent memory for realtime, AI/ML and Advanced Analytics and extensible to all memory – Centric workloads.

Software:

 Software Defined Architecture extracting performance benefits of cutting edge hardware supporting workload portability to truly compute anywhere with the memory speeds.

Result:

- Customer has state of the art AI/ML Big Memory Platform that is can scale and deliver performance when Data is Greater than Memory
- Achieved flexible software defined platform Big Memory Computing capabilities and poised for future dynamic model and data growth

Intervention 10x inferencing acceleration, NO App rewrite!

Santa Clara, CA November 2020

Source: Penguin Computing

DDR (now) and CXL (future) for PM attachment

Santa Clara, CA November 2020

Source: SMART Modular

PM Form Factor: DDR DIMM to E1.S

E1.S form factor as the PM successor to the DDR DIMM

Santa Clara, CA November 2020

Source: SMART

PM: \$/GB versus DRAM

PMEM DRAM 1 x 512GB \$13.86/GB 1 x 256GB \$7.02/GB \$18.94/GB 1 x 128GB \$4.00/GB \$13.67/GB 1 x 64GB \$7.65/GB 1 x 32GB \$8.43/GB 1 x 16GB \$9.37/GB

August 2020 prices from online resellers. Prices vary widely.

PM priced ~30% to 50% of DRAM (\$/GB basis)

Santa Clara, CA November 2020

Source: The Next Platform, MemVerge

PM Introduction Summary

- DRAM challenges ahead
- PM can address bandwidth, power, complexity, cost
- PM media consolidation around PCRAM
- 2nd generation PM is here now with improvements
- DB and AI/ML applications accelerated using PM + DRAM
- PM priced attractively versus DRAM
- PM form factor from DDR DIMM to E1.S

PERSISTENT MEMORY

Stay tuned for details at <u>www.snia.org/pm-summit</u>

- 9th annual Summit April 21-22, 2021
- Deep dive into the latest memory and storage developments
- New for 2021
 - Expanded to two days 30+ sessions
 - Virtual stream live or watch on demand

Thank You!

Everything You Need To Know For Success