Breaking Through the Memory Wall with CXL®

Presented by

Ahmed Medhioub

Product Manager, CXL Smart Memory Controllers

COMPUTE, MEMORY, S AND STORAGE SUMMIT

Solutions, Architectures, and Community VIRTUAL EVENT, MAY 21-22, 2024

Agenda

- Memory Wall
- Breaking through the Memory Wall
- Memory Bound Use Cases
- CXL for Modular Shared Infrastructure
- Ecosystem Enablement
- Calls to Action

The Memory Wall

Challenges with Previous Attempts

- 1. Limited scalability of memory BW and capacity
- 2. Significant memory latency delta vs local memory
- 3. Proprietary system configuration and deployment
- 4. Complex software integration with popular apps

Breaking Through the Memory Wall with CXL

- 1. Increase server memory BW and capacity by 50%
- 2. Reduce latency by 25%
- 3. Standard DRAM for flexible supply chain and cost
- 4. Seamlessly expand memory for existing and new applications

Breaking Through the Memory Wall

eCommerce & Business Intelligence

- Online Transaction Processing
- Online Analytics Processing

AI Inferencing

- Recommendation Engines
- Semantic Cache

Opportunity for CXL to Boost MySQL Database Performance

Opportunity for CXL to Boost Vector Database Performance

OLTP & OLAP Results

OLTP

150% More TPS with 15% Better CPU Utilization

Cut Big Query Times in <u>Half</u> with CXL Memory

Broad Applicability of CXL Interleaving

CXL Interleaving Benchmark Results

CXL Interleaving Up to 50%+ Performance Improvement

Breaking the Memory Wall for Databases

48 DIMMs with <u>Two</u> 2-Socket Systems

Popular Certified & Supported SAP HANA®Hardware

56 DIMMs with One 2-Socket System

Optimized Hardware for In-Memory Databases

Interleaving across CXL-Attached Memory

2.33x memory capacity and 1.66x memory bandwidth per socket with CXL Lower TCO for memory-intensive application

> ਿ⊴ COMPUTE, MEMORY, ਨ AND STORAGE SUMMIT

CXL Memory Expansion for Hyperscalers

- 2 PCIe 5.0 x16 add-in cards for memory expansion per M-DNO (DeNsity Optimized) HPM
- Each PCIe 5.0 x16 card with an MXIO cable connector

Coplanar High-Density Memory Expansion with Cold-Swap Support

Target Use Case

Config: 2DPC SW-tiering or 1DPC HW interleaving

Apps: In-memory databases, semantic cache

Mode: Low-latency memory expansion

CXL Memory Expansion for Hyperscalers

- 2 PCIe 5.0 x16 add-in cards for memory expansion per M-DNO (DeNsity Optimized) HPM
- Each PCIe 5.0 x16 card with an edge connector

Coplanar High-Density Memory Expansion with Cold-Swap Support

Target Use Case

Config: 2DPC SW-tiering or 1DPC HW interleaving

Apps: In-memory databases, semantic cache

Mode: Low-latency memory expansion

CXL Memory Expansion for Hyperscalers

- 2 PCIe 5.0 x16 add-in cards for memory expansion per M-DNO (DeNsity Optimized) HPM
- Each PCIe 5.0 x16 card with an MXIO cable connector

Component Form Factor

Design: Coplanar add-in card Connector: 2x PCIe 5.0 x8 (SFF-TA-1016) Memory: 2-4 DIMMs per board

Host Processor Module Form Factor

Interface: 2x PCIe 5.0 x8 (SFF-TA-1016) Power: DC-MHS PIC Power (2x3, 72A + 6) Mechanical: 175 x 74 x 35.10 mm (L x H x W)

System Form Factor

S COMPUTE, MEMORY,

Platform: DC-MHS 7OU Chassis Blades: 8 M-DNO HPM Expansion: Up to 8 DIMMs per Blade

Coplanar High-Density Memory Expansion with Cold-Swap Support

10 | ©2024 SNIA. All Rights Reserved.

Modular Shared Infrastructure (M-SIF)

OCP Alignment with DC-MHS:

- Flexible CXL Expansion Options (M-DNO)
- Shared Elements with CXL Support (M-SIF)
- Standardized DIMM Support
- Memory Expansion for High-Density Systems
- High Power Connector (200W-600W)

Challenges:

- Signal Integrity
- Link Bifurcation & Configuration
- Latency/Performance
- DIMM Interoperability

11 | ©2024 SNIA. All Rights Reserved.

16-24 DIMMs per M-DNO

Core Element Host Processor Module (HPM)

JBOF JBOG JBOM JBOM Node 1 Node 2 Node 3 Node 4

AND STORAGE SUMMIT

8-16 DIMMs per M-SIF

Disaggregated Resources

Enabling CXL Connectivity for M-SIF

Unlocking More Capabilities

Enabling CXL Connectivity for M-SIF

Extending Reach for PCIe/CXL Memory

System Under Test Configuration

5th Gen Intel® Xeon® Scalable CPU 128GB (2x 64GB DDR5-5600) Linux Ubuntu 22.04 Benchmark Intel MLC (Memory Latency Checker)

Optimizing High Performance & Latency Sensitive Applications through a Total Solution

SNIA COMPUTE, MEMORY, AND STORAGE SUMMIT

Ecosystem Enablement

- CXL Discovery and Allocation
- DIMM Stability & Performance
- OS Development & Feature Testing

- CXL Resource Management
- High Performance HW Interleaving
- High-Capacity Memory Density Tiering

- COSMOS & DMTF Redfish[®] Support
- CXL 2.0 RAS & Telemetry
- SW Integration & Orchestration

Cloud-Scale Interop Lab Sample Report for Leo

Example Tests

CLX Compliance Tests

- PCIe Electrical Testing
- Transaction Layer Testing
- Arbitrator and Multiplexer
- Power Management Tests

Reset and Initialization Tests

- System & Memory Tests
- DDR Tests
- Stress Tests
- Traffic Tests
- Security Tests
- RAS

Software				
Operating System & Drivers	Linux	Windows	vm ware [.]	More
Hardware				
CPU	AMD	arm	intel.	More
CXL Memory Controller Leo Memory Connectivity Platform				
Memory	Ancron	SAMSUNG	SK hynix	More

Working Closely with DDR Vendors to Improve Performance & Stability

Calls to Action

Learn More

CXL Products and Specifications

- Leo CXL Memory Controller: <u>Product Page</u>
- OCP CXL Tiered Memory Expander: <u>v1.0</u>
- OCP DC-MHS/M-SIF Base Spec: <u>v0.5</u>

Get Engaged

CXL Management Collaboration

- OCP: <u>CMM Proposal</u>
- Linux: <u>https://pmem.io/ndctl/collab</u>

Ecosystem Alliance Contact:

<u>ahmed.medhioub@asteralabs.com</u>

Visit us at this upcoming event

Stay up to date with our PCIe and CXL bulletins: https://www.asteralabs.com/interop

Interop Bulletin 2: Interop Testing with Leo Memory Connectivity Platform and DDR5-5600 RDIMMs

In our Interop Bulletin, we demonstrated interoperability between our Leo CXL Memory Connectivity Platform and DDR5-5600 RBIMMs from Micron, Samsung, and SK hynix.

RELATED LINK

Cloud-Scale Interop La

Leo Interop Lab Products

CXL Memory Connectivity Controllers Leo CXL Smart Memory Controllers

Sep 5, 2023

In our Interop Bulletin, we demonstrated interoperability between our Leo CXL Memory Connectivity Platform and DDR5-5600 RDIMMs from Micron, Samsung, and SK hynix.

