AI: Pushing Infra boundaries Memory is a key factor

Presented by

Manoj Wadekar, Meta Al Systems Technologist

COMPUTE, MEMORY, S AND STORAGE SUMMIT

Meta – Community Statistics

people use at least one of Meta services **monthly**, approximately

Family **Daily** active users

Ref: Meta 4Q'23 Results

AI Use Cases at Meta

Ranking and Recommendations

- Personalized Recommendations
- Deep Learning Recommendation Models (DLRM)
- Training and Inference

- Generative AI: Large Language Models and more
 - Llama2
 - Open access to LLMs for research and commercial use
 - Training and Inference (Prefill and Decode)

AI Challenging DC Infra

COMPUTE, MEMORY,

Al needs for DC Infra

- CPU-centric Scale-out applications
- Millions of small stateless applications
- Failure handling through redundancy
- Scale performance through large number of nodes

- Accelerator-centric Al Apps
- Al job spread across 1000's of GPUs
- Failure penalty of large job restart
- Performance scaling depends on all the components in the cluster (GPU/Accel, memory, network..)

AI Jobs: Scaling the performance

6 | ©2024 SNIA. All Rights Reserved.

AI Jobs: Scaling the performance

Diversity of AI system requirements

- Difficult to serve all classes of models with a single system design point
- Al use cases are pushing all the design points through software/hardware co-design
- Need for innovation in all the design points:
 - compute, network, memory, packaging, connectivity, cooling..

Memory Requirements for AI

Memory Capacity and Bandwidth

Accelerators getting larger

- Memory needs to grow with compute
- Integrated memory innovation
 - To maintain balanced design
 - Provide high reliability
 - Lower power density

But, AI Clusters demand more memory

- Model sizes are increasing, pushing memory capacity demand
- Accelerator performance pushing, Memory bandwidth needs
- Scale-up cluster needs to operate like single accelerator
 - More memory capacity
 - More bandwidth and lower latency to memory

Key AI Use Cases for Memory

Activations	 Activations computed during FWD, needed during BWD Can be offloaded instead of recomputed
Model Params/Embeddings	 Locality of access makes this ideal for offloading Current layers closer in HBM and rest in higher tier memory
Gradients, Weights, Opt Params	 Offloading weights, gradients and optimizer states to higher tier memory
Other	 In-memory checkpointing to improve reliability¹

Memory Expansion for Accelerators

Tier1 memory (HBM) not enough

Tier2 Memory for Capacity Expansion

COMPUTE, MEMORY,

Tiered memory between HBM and external DRAM can provide desired solution

Memory Expansion – Node Native

Tier2 Memory through Host CPU's Memory Controller

Tier2 Memory through Expansion card Memory Controller

Embedding and Activation offload to reduce accelerator stranding

Node Native MemLink

Interconnect:

- <u>NV-C2C</u>, CXL can enable higher amount of memory at high BW for accelerators
- BUT: higher speeds are required to avoid higher number of lanes for CXL

Memory Controller

High bandwidth requirements drive higher number of channels

Memory Modules

- Higher speed and capacity requirements to achieve BW and capacity
- Lower power and higher reliability

Memory Expansion – Fabric Attached

Fabric Attached Memory use cases:

Embedding/Activations offload, Shared KV Cache, in-memory checkpointing

Fabric Attached MemLink

High speed load/Store Fabrics

- NvLink
 - Already established over multiple generations

CXL

- Up and coming fabric leveraging existing technologies
- Need to address speed challenges significantly behind competitive solutions
- Infinity Fabric
 - Technology from AMD allowing accelerator to accelerator (and CPU) connectivity
- Software/Hardware co-design to take advantage
 - Tiered Memory, Near-Memory-Compute, In-Memory checkpoints etc.

AI Pushing Boundaries – Call for Action!

Memory Technology

Higher performance, capacity, reliability

Systems

Architectures, SW-HW codesign

Interconnects

Speeds, Radix, Connectivity

18 | ©2024 SNIA. All Rights Reserved.

Thank You

Please take a moment to rate this session.

Your feedback is important to us.

COMPUTE, MEMORY,