SNIA. | COMPUTE, MEMORY, CMSI | AND STORAGE

EDSFF: Taking Center Stage in the Data Center

A SNIA Webcast with

Cameron Brett, KIOXIA and Jonmichael Hands, Chia Network

November 10, 2022, 8:00 am PT

Today's Speakers

Jonmichael Hands Chia Network Co-Chair SNIA Solid State Drive Special Interest Group

Cameron Brett KIOXIA Co-Chair SNIA Solid State Drive Special Interest Group

SNIA Legal Notice

- The material contained in this presentation is copyrighted by the SNIA unless otherwise noted.
- Member companies and individual members may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced in their entirety without modification
 - The SNIA must be acknowledged as the source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA.
- Neither the author nor the presenter is an attorney and nothing in this presentation is intended to be, or should be, construed as legal advice or an opinion of counsel. If you need legal advice or a legal opinion please contact your attorney.
- The information presented herein represents the author's personal opinion and current understanding of the relevant issues involved. The author, the presenter, and the SNIA do not assume any responsibility or liability for damages arising out of any reliance on or use of this information.

NO WARRANTIES, EXPRESS OR IMPLIED. USE AT YOUR OWN RISK.

What Does SNIA Do?

 SNIA is a non-profit global organization dedicated to developing standards and education programs to advance storage and information technology.

Who is CMSI?

- Part of SNIA, the SNIA Compute, Memory, and Storage Initiative is a community of storage professionals and technical experts who support:
 - The industry drive to combine processing with memory and storage,
 - The creation of new compute architectures and software to analyze and exploit the explosion of data creation over the next decade.
- CMSI's three Special Interest Groups Computational Storage, Persistent Memory, and Solid State Drives – evangelize and educate on these technologies to the industry

www.snia.org/cmsi

Visit the SNIA Solid State Drive Form Factors webpage https://www.snia.org/forums/cmsi/knowledge/formfactors

- Provides descriptions, dimensions, and listings of mechanical/electrical specifications, connector specifications, and protocols for
 - E1.S and E1.L
 - E3.S and E3.L
 - M.2
 - U.3
 - Add-in cards

Solid State Drive Form Factors

Basic Page Solid State Drive Form Factors has been updated.

Updated November 2022

- 8

Solid-state drives (SSDs) are commonly used in client, hyperscale and enterprise compute environments. They typically come in three flavors: NVMe[™], SAS, and SATA. Since SSDs are made from flash memory, they can be built in many different form factors. This resource guide is designed to provide information on the most common and current SSDs in their various form factors. In addition to the form factor dimensions, information such as use case, interface, protocol, and mechanical/electrical and connector specifications are provided.

1 / 36

Flash Memory Summi

ঠ

Click on the names below to learn more about the many different SSD sizes and formats in a variety of form factors:

- EDSFF
- M.2
- 2.5-inch (U.2)
- Add In Cards

NVMe SSDs service many use cases in the data center. The NVMe SSD Classification page shows the different types of NVMe SSDs for different hyperscale and enterprise use cases. EDSFF Update: Industry Leaders Explain E1and E3 Innovations Specification Updates

The SNIA SFF Technology Affiliate is developing a broad range of standards for new connectors, form factors, and transceivers. Learn more about their work.

And for the latest on EDSFF form factors, view the PDF from an EDSFF Update Panel at Flash Memory Summit 2022 and download new white papers written by SNIA members Dell, HPE, KIOXIA, Meta, and Microsoft.

Updated EDSFF Specifications - as of 11/10/22

E3 Form Factors	Description
SNIA SFF-TA-1008 Rev 2.0.2	Enterprise and Datacenter Device Form Factor (E3)
SNIA SFF-TA-1002 Rev 1.3	Protocol Agnostic Multi-Lane High Speed Connector
SNIA SFF-TA-1009 Rev 3.0a	Enterprise and Datacenter Standard Pin and Signal Specification (EDSFF)
SNIA SFF-TA-1023 Rev 1.0a	Thermal Characterization Specification for EDSFF Devices

E1 Form Factors	Description
SNIA SFF-TA-1006 Rev 1.5	Enterprise and Datacenter 1U Short Device Form Factor (E1.S)
SNIA SFF-TA-1007 Rev 1.2	Enterprise and Datacenter 1U Long Device Form Factor (E1.L)
SNIA SFF-TA-1002 Rev 1.3	Protocol Agnostic Multi-Lane High Speed Connector
SNIA SFF-TA-1009 Rev 3.0a	Enterprise and Datacenter Standard Pin and Signal Specification (EDSFF)
SNIA SFF-TA-1012 Rev 1.0	Pin Assignment Reference for SFF-TA-1002 Connectors

7 ©2022 Storage Networking Industry Association. All Rights Reserved.

SNIA. | COMPUTE, MEMORY, CMSI | AND STORAGE

Form Factor Mix – 3 Major Variants

EM

Source: Forward Insights, SSD Insights, 22Q3 Report. Used with permission.

ING

ER

OCTOBER 18-20, 2022 SAN JOSE, CA

Go watch the EDSFF presentations in the storage track!

https://www.youtube.com/c/OpencomputeOrg

Thermal Characterization (SFF-TA-1023)

Figure 4-4: Example Device Thermal Profile

Changes to E3 (SFF-TA-1008)

Hyperscale

Yosemite V3: Sierra Point E1.S 2OU Flash Blade and Expansion Board Design Specification

E1.S Faceplate Reference Design

In figure 5-3, you can see a reference implementation of the E1.S faceplates in a server design.

Figure 4-1 – Faceplate design for Optional 25mm Asymmetric Enclosure

Figure 4-2 – Faceplate design for Option 9.5mm Symmetric Enclosure

Figure 4-3 Example Implementation of E1.S Faceplate in System

E1.S 1OU Flash Blade and Expansion Board Design Specification – Vernal Falls

Grand Canyon System Specification

1U Open Storage Solution with E1.S

Figure 4 Poseidon system backplane

Figure 5 Poseidon V1 Motherboard

Microsoft

ST5100 Wiwynn JBOF

Sapphire Rapids Compute Server with 8 E1.S 15mm at PCIe 5.0

Asrock

Dell Prototype E3.S System

HPE

HPE ProLiant DL325 Gen11

Cost Optimized Solution
1U. 1P
HPE Prol iant DI 325 Gen11

FEATURE	SPECS
Processors	1x 4 th Generation AMD EPYC [™] processors up to 96 cores
Memory	Up to 3TB DDR5* , CXL 1.1 supported
Front Drive Count	Up to 4 LFF HDD/SSD; SAS/SATA Up to 10 SFF HDD/SSD; SAS/SATA/NVMe Up to 20 EDSFF 3.S 1T*; NVMe
Rear Drive Count	No rear drive support
Boot Options	Up to 1x internal access SATA/NVMe M.2 or 1x External access hotpluggable raided M.2 NVMe
	(NOTE: will not take up a PCIe slot)
GPU Support	Up to 2SW or 2DW*
I/O	Up to 2 x16 PCIe Gen5 slots Up to 2 x8 OCP3.0 slots (upgradable to x16)
Storage Controller	Gen11 Controllers (PCIe and OROC)
Chassis Depth	SFF: 25.5"; LFF/EDSFF: 27.9"; GPU front end: 32.2"
Targeted Workloads	Software Defined Compute; CDN; low-end VDI
*DDR5 high capacity, EDSFF, GPU and 48SF	F chassis support will be available 1H 2023 New features from the prior generation

HPE ProLiant DL345 Gen11

Single-socket sca solution 2U, 1P HPE ProLiant DL345

				-
	FEATURE	SPECS		
e	Processors	1x 4 th Generation AMD EPYC™ processors up to 96 cores		
	Memory	Up to 3TB DDR5* , CXL 1.1 supporte	ed	
	Front Drive Count	Up to 12 LFF HDD/SSD; SAS/SATA	NVMe	
		Up to 36 EDSFF 3.S 1T*; NVMe		
	Mid Tray Count	Up to 8 SFF SAS/SATA/NVMe OR U	Jp to 4 LFF SAS/SATA	
	Rear Drive Count	Up to 2 SFF SAS/SATA/NVMe OR U	Jp to 4 LFF SAS/SATA	
	Boot Options	1x External access hot-pluggable r	aided M.2 NVMe	
		(NOTE: will not take up a PCIe slot)		
	GPU Support	Up to 4SW or 2DW		
	1/0	Up to 6 x16 PCIe Gen5 slots Up to 2 x8 OCP3.0 slots (upgradab	le to x16)	
	Storage Controller	Gen11 Controllers (PCIe and OROC)		
	Chassis Depth	SFF/EDSFF: 25.4"; LFF: 26.1"; GPU front end: 31.4"		
	Targeted Workloads	Software Defined Storage; Video Tra	inscoding	
•C	DR5 high capacity, EDSFF, GPU and 48SF	F chassis support will be available 1H 2023	New features from the prior genera	tion
				3

Edge optimized	Storage optimized	Density optimized	Accelerator optimized	Cloud optimized
1U, 1P HPE ProLiant DL325 Gen11 AMD 4 th Gen EPYC [™] Processor	2U, 1P HPE ProLiant DL345 Gen11 AMD 4 th Gen EPYC [™] Processor	1U, 2P HPE ProLiant DL365 Gen11 AMD 4 th Gen EPYC [™] Processor	2U, 2P HPE ProLiant DL385 Gen11 AMD 4 th Gen EPYC th Processor	1U, 1P HPE ProLiant RL300 Gen11 Ampere® Altra® and Ampere® Altra® Max
Software Defined Compute Price performance Optimized Core Count Network Bandwidth	Software defined storage Large storage capacity I/O bandwidth Memory bandwidth	High performance compute Front-end serviceability Compute Density	Max GPU support Network Bandwidth Core Count I/O Bandwidth	Cloud-native compute Service Providers/Digital First Core Count Scale-out
New	New	New	New	

Inspur

2U Open Solution with E3.S

High-density E3.S on Inspur's 2U next-generation CPU architecture brings greater performance and flexible expansion for a variety of workloads.

Modular Design, Versatile Configurations:

Drive Vendors

KIOXIA

- Range of E1.S and E3.S standard drives
- PCIe[®] 4.0 and 5.0 versions
- E1.L sample of Software-Enabled Flash[™] module (not shown)

Solidigm

SK Hynix

Samsung

Questions?

Thanks for Watching Our Webcast

- Please rate this webcast and provide us with feedback
- A link to this webcast and the PDF of the slides are posted to the SNIA Compute Memory and Storage Initiative website at <u>https://www.snia.org/forums/cmsi/knowledge/articlespresentations</u>
- You can also find this <u>webcast</u> and many other videos and presentations on today's topics in the <u>SNIA</u> <u>Educational Library</u>
- A Q&A from this webcast will be posted to the SNIA <u>Compute, Memory, and Storage Blog</u>
- Learn more about Solid State Drive technology at <u>https://www.snia.org/technology-focus/physical-</u> <u>storage</u>

CMSI ON AND STORAGE

Is the Data Really Gone? A Q&A

SNIA

🛗 August 25, 2022 🛛 💄 SNIA CMSI 🛛 🗁 Solid State Storage, Standards

In our recent webcast Is the Data Really Gone? A Primer on the Sanitization of Storage Devices, our presenters Jonmichael Hands (Chia Network), Jim Hatfield (Seagate), and John

Sear

COMPUTE, MEMORY,

WELCOME TO THE SNIA CMSI BLOG

The SNIA Compute, Memory, and Storage Initiative (CMSI) supports the acceptance and growth of Computational Storage, Persistent Memory, and Solid State Storage in the marketplace. All posts added to this blog are contributed by members of the CMSI. Please feel free to leave comments and ask questions on our posts. To learn more about the CMSI – visit our website.

@SNIACOMPUTATION

Tweets from @sniacomputation SNIA SNIA Computatio... y

@sniacom... · Aug 26

